Fine-grained parallel genetic algorithm:a global convergence criterion

This paper presents a fine-grained parallel genetic algorithm with mutation rate as a control parameter. The function of the mutation rate is similar to the temperature parameter in the simulated annealing [3,8,10]. The motivation behind this research is to develop a global convergence theory for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics Jg. 73; H. 2; S. 139 - 155
Hauptverfasser: Muhammad, A., Bargiela, A., King, G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Gordon and Breach Science Publishers 01.01.1999
Taylor and Francis
Schlagworte:
ISSN:0020-7160, 1029-0265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a fine-grained parallel genetic algorithm with mutation rate as a control parameter. The function of the mutation rate is similar to the temperature parameter in the simulated annealing [3,8,10]. The motivation behind this research is to develop a global convergence theory for the fine-grained parallel genetic algorithms based on the simulated annealing model There is a mathematical difficulty associated with the genetic algorithms as they do not strictly come under die definition of an algorithm. Algorithms normally have a starting point and a defined point of termination which genetic algorithms lack. The parallel genetic algorithm presented here is a stochastic process based on Markov chain [2] model It has been proven that fine-grained parallel genetic algorithm is an ergodic Markov chain and that it converges to the stationary distribution. The theoretical result has been applied to in the context of optimisation of a deceptive function of 4-th order.
ISSN:0020-7160
1029-0265
DOI:10.1080/00207169908804885