Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework

The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica. D Ročník 172; číslo 1; s. 190 - 216
Hlavní autoři: Bridges, Thomas J., Derks, Gianne, Gottwald, Georg
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.11.2002
Témata:
ISSN:0167-2789, 1872-8022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The spectral problem associated with the linearization about solitary waves of the generalized fifth-order KdV equation is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. A numerical framework, based on a fast robust shooting algorithm on exterior algebra spaces is introduced. The complete algorithm has several new features, including a rigorous numerical algorithm for choosing starting values, a new method for numerical analytic continuation of starting vectors, the role of the Grassmannian G 2( C 5) in choosing the numerical integrator, and the role of the Hodge star operator for relating ⋀ 2( C 5) and ⋀ 3( C 5) and deducing a range of numerically computable forms for the Evans function. The algorithm is illustrated by computing the stability and instability of solitary waves of the fifth-order KdV equation with polynomial nonlinearity.
ISSN:0167-2789
1872-8022
DOI:10.1016/S0167-2789(02)00655-3