Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Microscopy and microanalysis Ročník 28; číslo 1; s. 109 - 122
Hlavní autoři: Blanco-Portals, Javier, Peiró, Francesca, Estradé, Sònia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 01.02.2022
Oxford University Press
Témata:
ISSN:1431-9276, 1435-8115, 1435-8115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
AbstractList Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
Author Estradé, Sònia
Blanco-Portals, Javier
Peiró, Francesca
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0000-0002-7037-269X
  surname: Blanco-Portals
  fullname: Blanco-Portals, Javier
  email: jblanco@ub.edu
  organization: 1LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
– sequence: 2
  givenname: Francesca
  surname: Peiró
  fullname: Peiró, Francesca
  organization: 1LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
– sequence: 3
  givenname: Sònia
  surname: Estradé
  fullname: Estradé, Sònia
  organization: 1LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35177136$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvGyEQgFGVqnm0P6CXCimXXjYZwMDu0bGdh-Q-VDfnFbvMWqT7SIE9-N8HO44iJUpOzMD3jYaZY3LQDz0S8pXBGQOmz1dsIljBteIpFapQH8hRupJZzpg82MUs274fkuMQ7gBAgFafyKGQTOtkHJF_q-hNxLXDQJvB08ViuaJzEw2d9qbdBBfO6E0f_WDH2vVrevtj-pua3tLr-cVqNv25k-auwz64IRkubugfTHBM6Q6ctWOI6JP8mXxsTBvwy_48IbeXi7-z62z56-pmNl1mtdAiZpUQopa5bQANV41gFeSgZAUNgK1RamU1CoOYAmByAjZnHLmyBU5yXilxQr4_1r33w_8RQyw7F2psW9PjMIaSKwEFB80hoacv0Lth9OkfW4oXsiiE5In6tqfGqkNb3nvXGb8pn8aYAP0I1H4IwWNT1i6a7QjSdF1bMii3CytfLSyZ7IX5VPw9R-wd01Xe2TU-d_229QDfO6N7
CitedBy_id crossref_primary_10_1088_2632_2153_add8e1
crossref_primary_10_1093_pnasnexus_pgae197
crossref_primary_10_1016_j_ecoinf_2025_103058
crossref_primary_10_1016_j_ecoinf_2025_103222
crossref_primary_10_3390_computation13060144
crossref_primary_10_1016_j_micron_2025_103858
crossref_primary_10_1016_j_ultramic_2023_113828
crossref_primary_10_1126_sciadv_adr8793
crossref_primary_10_1016_j_dsim_2025_05_001
crossref_primary_10_1007_s10639_023_12010_1
crossref_primary_10_1016_j_iot_2025_101764
crossref_primary_10_1007_s42001_024_00273_8
crossref_primary_10_1016_j_sab_2025_107137
crossref_primary_10_1051_bioconf_202412910015
crossref_primary_10_3390_su151813577
crossref_primary_10_1016_j_ecoinf_2023_102089
crossref_primary_10_1093_mam_ozae014
crossref_primary_10_1002_adsu_202300559
Cites_doi 10.1007/b107408
10.1016/j.laa.2005.06.025
10.1016/j.ultramic.2021.113403
10.1002/jemt.22099
10.1016/j.ultramic.2012.10.001
10.1016/j.ultramic.2010.10.001
10.1017/S1431927615015664
10.1587/transfun.E92.A.708
10.1016/j.patrec.2009.09.011
10.1145/304181.304187
10.1016/j.ultramic.2021.113314
10.1017/S1431927620019856
10.1016/j.cosrev.2021.100378
10.1016/j.ultramic.2017.06.023
10.1016/j.micron.2011.07.008
10.1080/01621459.1963.10500845
10.1016/B978-044452701-1.00067-3
10.1126/science.aao0865
10.1561/2200000055
10.1017/S1431927620020486
10.1109/34.868688
10.1109/I-SMAC49090.2020.9243502
10.21105/joss.00205
10.1017/S1431927612002243
10.1016/j.ultramic.2017.11.010
10.1002/adom.202001808
10.1162/NECO_a_00168
10.1109/TPAMI.1979.4766926
10.1103/PhysRevLett.99.086102
10.1145/3068335
10.1080/01621459.1983.10478008
10.1007/978-3-319-13212-9
10.1016/j.jsb.2021.107745
10.1126/science.290.5500.2319
10.1038/ncomms3960
10.1007/s00357-014-9161-z
10.1155/2018/8019232
10.1016/j.ultramic.2016.08.006
10.1021/acs.nanolett.6b01922
10.1002/0470013192.bsa501
10.1016/j.ultramic.2012.07.020
10.1016/j.jeurceramsoc.2014.02.017
10.1021/acs.jpcc.7b01749
10.1017/S1431927614000440
10.1016/0304-3991(90)90070-3
10.1109/TIT.1982.1056489
10.1038/nbt.4314
10.1016/j.ultramic.2016.10.008
10.1145/2733381
10.1145/502807.502808
10.1109/TKDE.2012.51
10.1016/j.micron.2020.102981
10.1088/1367-2630/ab7a89
10.1038/s41598-017-07709-4
ContentType Journal Article
Copyright Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America
Copyright_xml – notice: Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1017/S1431927621013696
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
ProQuest Central Student
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1435-8115
EndPage 122
ExternalDocumentID 35177136
10_1017_S1431927621013696
Genre Journal Article
GrantInformation_xml – fundername: Agència de Gestió d'Ajuts Universitaris i de Recerca Spanish Research Network
GroupedDBID ---
-E.
.FH
09C
0E1
0R~
123
29M
3V.
4.4
53G
5VS
5WD
74X
74Y
7RV
7X7
7~V
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AARAB
AASVR
AATID
AAUKB
ABBXD
ABEFU
ABITZ
ABJNI
ABKKG
ABMWE
ABMYL
ABPTD
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABWCF
ABWST
ABZCX
ACBEK
ACBMC
ACCHT
ACFRR
ACGFS
ACIMK
ACIPB
ACIWK
ACPRK
ACQFJ
ACQPF
ACREK
ACUFI
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADCGK
ADFEC
ADGEJ
ADIPN
ADIYS
ADKIL
ADOCW
ADOVH
ADQBN
ADRDM
ADVEK
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFGWE
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANFBD
ANPSP
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZGZS
BBLKV
BBNVY
BENPR
BGHMG
BGLVJ
BGNMA
BHPHI
BKEYQ
BLZWO
BMAJL
BPHCQ
BRIRG
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CJCSC
COF
CS3
DC4
DOHLZ
DU5
EBS
EJD
EX3
F5P
FYUFA
HCIFZ
HG-
HMCUK
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JVRFK
KCGVB
KFECR
KOP
L98
LAS
LK8
LW7
M-V
M1P
M4Y
M7P
NAPCQ
NIKVX
NU0
O9-
OBOKY
OJZSN
OVD
OWPYF
OYBOY
P62
PQQKQ
PROAC
PSQYO
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S6-
S6U
SAAAG
SDH
SY4
T9M
TEORI
UKHRP
UT1
UU6
VUG
WFFJZ
WOW
WQ3
WXU
WXY
WYP
ZYDXJ
AAPXW
AAUAY
AAYXX
ABDFA
ABDTM
ABEJV
ABGNP
ABMNT
ABPQP
ABVGC
ABVKB
ABXVV
ABZEO
ACVCV
ACZBC
ADNBA
ADVOB
ADYJX
AEMTJ
AEUYN
AFFHD
AGMDO
AHGBF
AJBYB
AJDVS
AJNCP
ATGXG
BCRHZ
CITATION
H13
NU-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ROX
NPM
7QO
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c373t-b333c58df0ea26f31b08065b0f00dce576d7e3aee76d01540d812e26d9e482b63
IEDL.DBID M7P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757458900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1431-9276
1435-8115
IngestDate Thu Oct 02 05:12:42 EDT 2025
Mon Oct 06 18:25:45 EDT 2025
Thu Apr 03 07:08:42 EDT 2025
Tue Nov 18 21:54:55 EST 2025
Sat Nov 29 05:44:15 EST 2025
Wed Mar 13 05:54:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HDBSCAN
UMAP
dimensionality reduction
clustering
EELS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-b333c58df0ea26f31b08065b0f00dce576d7e3aee76d01540d812e26d9e482b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7037-269X
PMID 35177136
PQID 2629599352
PQPubID 33692
PageCount 14
ParticipantIDs proquest_miscellaneous_2630920720
proquest_journals_2629599352
pubmed_primary_35177136
crossref_citationtrail_10_1017_S1431927621013696
crossref_primary_10_1017_S1431927621013696
cambridge_journals_10_1017_S1431927621013696
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: United States
– name: Oxford
PublicationTitle Microscopy and microanalysis
PublicationTitleAlternate Microsc Microanal
PublicationYear 2022
Publisher Cambridge University Press
Oxford University Press
Publisher_xml – name: Cambridge University Press
– name: Oxford University Press
References 2017; 7
2017; 42
2013; 4
2017; 2
2006; 416
2013; 25
2012; 122
2020; 20
2013; 125
2012; 18
2011; 111
2000; 290
2014; 20
1982; 28
2001
2014; 15
1979; 3
2007; 4
2011; 23
2021; 232
2017; 121
2021; 40
2021; 9
2018; 185
2010; 31
1990; 34
1999; 28
2000; 22
2019; 37
2015; 10
2009
2021; 140
2017; 172
2007; 99
2016; 16
2012; 75
1983; 78
1963; 58
2018; 2018
2018; 359
2021
1967; 1
2021; 213
2020; 26
2017; 182
2016; 374
2020; 22
2001; 33
2009; 2
2016; 170
2012; 43
2014; 34
2016; 9
2014; 31
2016; 22
S1431927621013696_ref32
S1431927621013696_ref31
S1431927621013696_ref30
S1431927621013696_ref25
S1431927621013696_ref23
S1431927621013696_ref29
S1431927621013696_ref28
S1431927621013696_ref26
S1431927621013696_ref61
S1431927621013696_ref60
Shi (S1431927621013696_ref48) 2000; 22
S1431927621013696_ref21
S1431927621013696_ref65
S1431927621013696_ref64
S1431927621013696_ref20
S1431927621013696_ref63
S1431927621013696_ref62
S1431927621013696_ref14
S1431927621013696_ref58
S1431927621013696_ref57
S1431927621013696_ref13
S1431927621013696_ref56
S1431927621013696_ref12
S1431927621013696_ref11
S1431927621013696_ref55
S1431927621013696_ref18
S1431927621013696_ref17
S1431927621013696_ref16
S1431927621013696_ref15
S1431927621013696_ref59
S1431927621013696_ref19
Maaten Van Der (S1431927621013696_ref34) 2014; 15
S1431927621013696_ref8
S1431927621013696_ref9
S1431927621013696_ref50
S1431927621013696_ref6
S1431927621013696_ref7
S1431927621013696_ref4
S1431927621013696_ref5
S1431927621013696_ref10
S1431927621013696_ref2
S1431927621013696_ref54
S1431927621013696_ref53
S1431927621013696_ref3
S1431927621013696_ref52
S1431927621013696_ref1
Han (S1431927621013696_ref22) 2011
S1431927621013696_ref47
S1431927621013696_ref46
Hershey (S1431927621013696_ref24) 2007; 4
S1431927621013696_ref45
S1431927621013696_ref44
S1431927621013696_ref49
MacQueen (S1431927621013696_ref35) 1967; 1
Ng (S1431927621013696_ref40) 2001
S1431927621013696_ref43
S1431927621013696_ref42
S1431927621013696_ref41
S1431927621013696_ref36
Jolliffe (S1431927621013696_ref27) 2016; 374
S1431927621013696_ref33
S1431927621013696_ref39
S1431927621013696_ref38
S1431927621013696_ref37
Spurgeon (S1431927621013696_ref51) 2020; 20
References_xml – volume: 121
  start-page: 10552
  year: 2017
  end-page: 10561
  article-title: Quantitative analysis of electron beam damage in organic thin films
  publication-title: J Phys Chem C
– volume: 213
  start-page: 107745
  year: 2021
  article-title: Practical considerations for using K3 cameras in CDS mode for high-resolution and high-throughput single particle cryo-EM
  publication-title: J Struct Biol
– volume: 22
  start-page: 033029
  year: 2020
  article-title: Novel spectral unmixing approach for electron energy-loss spectroscopy
  publication-title: New J Phys
– volume: 34
  start-page: 3007
  year: 2014
  end-page: 3018
  article-title: Electron-beam damage and point defects near grain boundaries in cerium oxide
  publication-title: J Eur Ceram Soc
– start-page: 849
  year: 2001
  end-page: 856
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 273
  year: 2001
  end-page: 321
  article-title: Searching in metric spaces
  publication-title: ACM Comput Surv
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 22
  start-page: 237
  year: 2016
  end-page: 249
  article-title: High dynamic range pixel array detector for scanning transmission electron microscopy
  publication-title: Microsc Microanal
– volume: 232
  start-page: 113403
  year: 2021
  article-title: WhatEELS. A new python-based interactive software solution for ELNES analysis combining clustering and NLLS
  publication-title: Ultramicroscopy
– volume: 20
  start-page: 698
  year: 2014
  end-page: 705
  article-title: Oxide wizard: An EELS application to characterize the white lines of transition metal edges
  publication-title: Microsc Microanal
– volume: 374
  year: 2016
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 37
  start-page: 38
  year: 2019
  end-page: 47
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat Biotechnol
– volume: 111
  start-page: 169
  year: 2011
  end-page: 176
  article-title: Mapping titanium and tin oxide phases using EELS: An application of independent component analysis
  publication-title: Ultramicroscopy
– volume: 185
  start-page: 42
  year: 2018
  end-page: 48
  article-title: Clustering analysis strategies for electron energy loss spectroscopy (EELS)
  publication-title: Ultramicroscopy
– volume: 18
  start-page: 78
  year: 2012
  end-page: 79
  article-title: K2: A super-resolution electron counting direct detection camera for cryo-EM
  publication-title: Microsc Microanal
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 17
  article-title: On the use of t-distributed stochastic neighbor embedding for data visualization and classification of individuals with Parkinson's disease
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 42
  year: 2017
  article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN
  publication-title: ACM Transactions on Database Systems
– volume: 172
  start-page: 40
  year: 2017
  end-page: 46
  article-title: Can we use PCA to detect small signals in noisy data?
  publication-title: Ultramicroscopy
– volume: 4
  start-page: IV
  year: 2007
  end-page: 317
  article-title: Approximating the Kullback Leibler divergence between Gaussian mixture models
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings
– volume: 20
  start-page: 274
  year: 2020
  end-page: 279
  article-title: Towards data-driven next-generation transmission electron microscopy
  publication-title: Nature Materials 2020 20:3
– volume: 359
  start-page: 675
  year: 2018
  end-page: 679
  article-title: Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials
  publication-title: Science
– volume: 2
  start-page: 205
  year: 2017
  article-title: Hdbscan: Hierarchical density based clustering
  publication-title: The Journal of Open Source Software
– volume: 4
  start-page: 1
  year: 2013
  end-page: 8
  article-title: Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles
  publication-title: Nat Commun
– volume: 43
  start-page: 57
  year: 2012
  end-page: 67
  article-title: Quantitative statistical analysis, optimization and noise reduction of atomic resolved electron energy loss spectrum images
  publication-title: Micron
– volume: 40
  start-page: 100378
  year: 2021
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)
  publication-title: Comput Sci Rev
– volume: 182
  start-page: 191
  year: 2017
  end-page: 194
  article-title: On the loss of information in PCA of spectrum-images
  publication-title: Ultramicroscopy
– volume: 15
  start-page: 3221
  year: 2014
  end-page: 3245
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: Journal of Machine Learning Research
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 9
  start-page: 1
  year: 2016
  end-page: 118
  article-title: Generalized low rank models
  publication-title: Found Trends Mach Learn
– volume: 2
  start-page: 635
  year: 2009
  end-page: 654
  article-title: Density-based clustering methods
  publication-title: Compr Chemom
– volume: 26
  start-page: 1928
  year: 2020
  end-page: 1930
  article-title: Hybrid pixel EELS detector: Low noise, high speed, and large dynamic range
  publication-title: Microsc Microanal
– volume: 3
  start-page: 306
  year: 1979
  end-page: 307
  article-title: A problem of dimensionality: A simple example
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recog Lett
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  article-title: Direct detection electron energy-loss spectroscopy: A method to push the limits of resolution and sensitivity
  publication-title: Sci Rep
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 16
  start-page: 5068
  year: 2016
  end-page: 5073
  article-title: 3D visualization of the iron oxidation state in FeO/Fe 3 O 4 core–shell nanocubes from electron energy loss tomography
  publication-title: Nano Lett
– start-page: 113314
  year: 2021
  article-title: Dimensionality reduction and unsupervised clustering for EELS-SI
  publication-title: Ultramicroscopy
– volume: 31
  start-page: 274
  year: 2014
  end-page: 295
  article-title: Ward's hierarchical agglomerative clustering method: Which algorithms implement ward's criterion?
  publication-title: Journal of Classification
– volume: 28
  start-page: 49
  year: 1999
  end-page: 60
  article-title: OPTICS
  publication-title: ACM SIGMOD Record
– volume: 78
  start-page: 553
  year: 1983
  end-page: 569
  article-title: A method for comparing two hierarchical clusterings
  publication-title: J Am Stat Assoc
– volume: 170
  start-page: 43
  year: 2016
  end-page: 59
  article-title: Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization
  publication-title: Ultramicroscopy
– volume: 25
  start-page: 1336
  year: 2013
  end-page: 1353
  article-title: Nonnegative matrix factorization: A comprehensive review
  publication-title: IEEE Trans Knowled Data Eng
– volume: 125
  start-page: 35
  year: 2013
  end-page: 42
  article-title: Statistical consequences of applying a PCA noise filter on EELS spectrum images
  publication-title: Ultramicroscopy
– volume: 416
  start-page: 29
  year: 2006
  end-page: 47
  article-title: Nonnegative matrix factorization for spectral data analysis
  publication-title: Linear Algebra and its Applications
– volume: 23
  start-page: 2421
  year: 2011
  end-page: 2456
  article-title: Algorithms for nonnegative matrix factorization with the β-divergence
  publication-title: Neural Comput
– volume: 75
  start-page: 1550
  year: 2012
  end-page: 1556
  article-title: Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV
  publication-title: Microsc Res Tech
– volume: 99
  start-page: 1
  year: 2007
  end-page: 4
  article-title: Two-dimensional mapping of chemical information at atomic resolution
  publication-title: Phys Rev Lett
– volume: 26
  start-page: 2112
  year: 2020
  end-page: 2114
  article-title: Development of clustering algorithm applied for the EELS analysis of advanced devices
  publication-title: Microsc Microanal
– volume: 140
  start-page: 102981
  year: 2021
  article-title: Benefits of direct electron detection and PCA for EELS investigation of organic photovoltaics materials
  publication-title: Micron
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Stat Assoc
– volume: 34
  start-page: 165
  year: 1990
  end-page: 178
  article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts
  publication-title: Ultramicroscopy
– start-page: 708
  year: 2009
  end-page: 721
  article-title: Fast local algorithms for large scale nonnegative matrix and tensor factorizations
  publication-title: IEICE Transactions on Fundamentals of Electronics, Commun Comput Sci
– volume: 122
  start-page: 12
  year: 2012
  end-page: 18
  article-title: EEL spectroscopic tomography: Towards a new dimension in nanomaterials analysis
  publication-title: Ultramicroscopy
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
– volume: 10
  start-page: 1
  year: 2015
  end-page: 51
  article-title: Hierarchical density estimates for data clustering, visualization, and outlier detection
  publication-title: ACM Trans Knowl Discov From Data
– volume: 9
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Separating physically distinct mechanisms in complex infrared plasmonic nanostructures via machine learning enhanced electron energy loss spectroscopy
  publication-title: Adv Opt Mater
– ident: S1431927621013696_ref36
  doi: 10.1007/b107408
– ident: S1431927621013696_ref43
  doi: 10.1016/j.laa.2005.06.025
– ident: S1431927621013696_ref5
  doi: 10.1016/j.ultramic.2021.113403
– ident: S1431927621013696_ref16
  doi: 10.1002/jemt.22099
– ident: S1431927621013696_ref31
  doi: 10.1016/j.ultramic.2012.10.001
– ident: S1431927621013696_ref14
  doi: 10.1016/j.ultramic.2010.10.001
– ident: S1431927621013696_ref38
– ident: S1431927621013696_ref53
  doi: 10.1017/S1431927615015664
– ident: S1431927621013696_ref12
  doi: 10.1587/transfun.E92.A.708
– ident: S1431927621013696_ref25
  doi: 10.1016/j.patrec.2009.09.011
– ident: S1431927621013696_ref2
  doi: 10.1145/304181.304187
– ident: S1431927621013696_ref46
  doi: 10.1016/j.ultramic.2021.113314
– ident: S1431927621013696_ref44
  doi: 10.1017/S1431927620019856
– ident: S1431927621013696_ref29
– ident: S1431927621013696_ref3
  doi: 10.1016/j.cosrev.2021.100378
– ident: S1431927621013696_ref45
  doi: 10.1016/j.ultramic.2017.06.023
– ident: S1431927621013696_ref15
  doi: 10.1016/j.micron.2011.07.008
– volume: 20
  start-page: 274
  year: 2020
  ident: S1431927621013696_ref51
  article-title: Towards data-driven next-generation transmission electron microscopy
  publication-title: Nature Materials 2020 20:3
– ident: S1431927621013696_ref61
  doi: 10.1080/01621459.1963.10500845
– ident: S1431927621013696_ref32
– ident: S1431927621013696_ref13
  doi: 10.1016/B978-044452701-1.00067-3
– ident: S1431927621013696_ref65
  doi: 10.1126/science.aao0865
– ident: S1431927621013696_ref59
  doi: 10.1561/2200000055
– ident: S1431927621013696_ref10
  doi: 10.1017/S1431927620020486
– volume: 22
  start-page: 888
  year: 2000
  ident: S1431927621013696_ref48
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– ident: S1431927621013696_ref42
  doi: 10.1109/I-SMAC49090.2020.9243502
– ident: S1431927621013696_ref37
  doi: 10.21105/joss.00205
– ident: S1431927621013696_ref6
  doi: 10.1017/S1431927612002243
– volume: 374
  year: 2016
  ident: S1431927621013696_ref27
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– ident: S1431927621013696_ref56
  doi: 10.1016/j.ultramic.2017.11.010
– ident: S1431927621013696_ref28
  doi: 10.1002/adom.202001808
– ident: S1431927621013696_ref18
  doi: 10.1162/NECO_a_00168
– ident: S1431927621013696_ref58
  doi: 10.1109/TPAMI.1979.4766926
– ident: S1431927621013696_ref7
  doi: 10.1103/PhysRevLett.99.086102
– ident: S1431927621013696_ref47
  doi: 10.1145/3068335
– ident: S1431927621013696_ref19
  doi: 10.1080/01621459.1983.10478008
– ident: S1431927621013696_ref1
  doi: 10.1007/978-3-319-13212-9
– ident: S1431927621013696_ref52
  doi: 10.1016/j.jsb.2021.107745
– ident: S1431927621013696_ref54
  doi: 10.1126/science.290.5500.2319
– ident: S1431927621013696_ref17
  doi: 10.1038/ncomms3960
– ident: S1431927621013696_ref39
  doi: 10.1007/s00357-014-9161-z
– ident: S1431927621013696_ref41
  doi: 10.1155/2018/8019232
– ident: S1431927621013696_ref49
  doi: 10.1016/j.ultramic.2016.08.006
– ident: S1431927621013696_ref55
  doi: 10.1021/acs.nanolett.6b01922
– ident: S1431927621013696_ref26
  doi: 10.1002/0470013192.bsa501
– ident: S1431927621013696_ref63
  doi: 10.1016/j.ultramic.2012.07.020
– volume: 15
  start-page: 3221
  year: 2014
  ident: S1431927621013696_ref34
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: Journal of Machine Learning Research
– ident: S1431927621013696_ref62
  doi: 10.1016/j.jeurceramsoc.2014.02.017
– start-page: 849
  year: 2001
  ident: S1431927621013696_ref40
  publication-title: Advances in Neural Information Processing Systems
– volume: 1
  start-page: 281
  year: 1967
  ident: S1431927621013696_ref35
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– ident: S1431927621013696_ref30
  doi: 10.1021/acs.jpcc.7b01749
– ident: S1431927621013696_ref64
  doi: 10.1017/S1431927614000440
– volume-title: Data Mining: Concepts and Techniques.
  year: 2011
  ident: S1431927621013696_ref22
– ident: S1431927621013696_ref57
  doi: 10.1016/0304-3991(90)90070-3
– ident: S1431927621013696_ref33
  doi: 10.1109/TIT.1982.1056489
– ident: S1431927621013696_ref4
  doi: 10.1038/nbt.4314
– ident: S1431927621013696_ref50
  doi: 10.1016/j.ultramic.2016.10.008
– volume: 4
  start-page: IV
  year: 2007
  ident: S1431927621013696_ref24
  article-title: Approximating the Kullback Leibler divergence between Gaussian mixture models
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings
– ident: S1431927621013696_ref9
  doi: 10.1145/2733381
– ident: S1431927621013696_ref11
  doi: 10.1145/502807.502808
– ident: S1431927621013696_ref60
  doi: 10.1109/TKDE.2012.51
– ident: S1431927621013696_ref21
  doi: 10.1016/j.micron.2020.102981
– ident: S1431927621013696_ref8
  doi: 10.1088/1367-2630/ab7a89
– ident: S1431927621013696_ref23
  doi: 10.1038/s41598-017-07709-4
– ident: S1431927621013696_ref20
SSID ssj0003076
Score 2.4109528
Snippet Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new...
SourceID proquest
pubmed
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109
SubjectTerms Algorithms
Classification
Cluster analysis
Clustering
Core-shell particles
Data analysis
Datasets
Electron energy loss spectroscopy
Energy dissipation
Energy loss
Image segmentation
Manganese
Manganese oxides
Nanoparticles
Noise
Software and Instrumentation
Spectroscopy
Spectrum analysis
Title Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering
URI https://www.cambridge.org/core/product/identifier/S1431927621013696/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/35177136
https://www.proquest.com/docview/2629599352
https://www.proquest.com/docview/2630920720
Volume 28
WOSCitedRecordID wos000757458900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: M7P
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 7X7
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 7RV
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: P5Z
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: BENPR
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEB_s1QNfPPVOrVdLBJ_EaDbpbnafpF_HCWdZWnsUX0q-Fo47tue1FfzvzezXKWJffAlLNpMEJpOZZCa_AXjLldKJtzOoVKZP-3FgqA6FpU7gOx8bBrIESbqQ02m8XCZpdeG2qcIq6z2x2Kjt2uAd-Uce8ST0yjTkn26_U8wahd7VKoVGC9qIksCL0L202Yn9-i1fF4mAJlxGtVcTIaOxEuv8kSfAnHa_Yyv8qaP-YXgWCujs6H-n_gQeV6YnGZRr5Sk8cPkzOCyTUf48husaqNZtiLdkyWRyMSdjtVWkBi75QD5jXLvdGa_vyOLLICUqt-R8PJyPBtOCaIzJAkqgD2_ekxkCwyLri4ajmx3CMnjiE1icTb6OzmmVioEaIcWWaiGECWObMad4lIlAM_TIapYxZo3zhxYrnVDO-Q-0ypj1hoPjkU1cP-Y6Es_hIF_n7iUQqUOWRUpxnVmvGcNYZipQQWL7mdBJoDvwvmHEqhKozaoMRpOrv_jWAVbzamUqWHPMrnGzj-RdQ3JbYnrsa9ytmXo_m3uOduBN89sLJnpbVO7WO2wjWMKZ5KwDL8qF04wmvAxI3_2r_Z2fwiOOry2KIPEuHGzvdu41PDQ_tlebux605OwSy6UsyrgH7eFkms56hRT4Mg2__QIwaASj
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoIL70egwCLBBbHtetf22geEQpIqUdMooq1UcTH7soSonNIkoP4pfiM73tgFIXLrgZtl76wfO6_1zHwD8IorpXPvZ1CpTEzjLDJUJ8JSJ7DOxyaRDCBJYzmZZMfH-XQDfja1MJhW2ejEWlHbmcF_5Ds85XnijWnC359-o9g1CqOrTQuNwBZ77vyH37LN3436fn1fc747OOwN6aqrADVCigXVQgiTZLZkTvG0FJFmGFzUrGTMGuf9byudUM75A3QwmPU20PHU5i7OuE6Fn_cKXI1jzlCKpsmnVvN7eQnVTCKiOZdpE0VFiGo8ief8FivCHnq_Yzn8aRP_4ejWBm_39v_2qe7ArZVrTbpBFu7ChqvuwfXQbPP8PnxtgHjdnHhPnQwG4wPSVwtFGmCWbTLCvH27NN6ek6P97pSoypJh_8NBrzupifrYDCEAmfjtC_mIwLfI2vXA3skSYSc88QM4upQ3fQib1axyj4FInbAyVYrr0nrLn2SyVJGKchuXQueR7sDbduGLlcKYFyHZThZ_8UkHWMMbhVnBtmP3kJN1JG9aktOAWbJu8FbDRBdPc8FBHXjZXvaKB6NJqnKzJY4RLOdMctaBR4FR27sJL-PST_9k_eQv4MbwcH9cjEeTvadwk2NlSZ0QvwWbi7OlewbXzPfFl_nZ81rOCHy-bG79Bf2YW8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+for+EELS+Data+Analysis.+Introducing+UMAP+and+HDBSCAN+for+Dimensionality+Reduction+and+Clustering&rft.jtitle=Microscopy+and+microanalysis&rft.au=Blanco-Portals%2C+Javier&rft.au=Peir%C3%B3%2C+Francesca&rft.au=Estrad%C3%A9%2C+S%C3%B2nia&rft.date=2022-02-01&rft.pub=Oxford+University+Press&rft.issn=1431-9276&rft.eissn=1435-8115&rft.volume=28&rft.issue=1&rft.spage=109&rft.epage=122&rft_id=info:doi/10.1017%2FS1431927621013696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon