On Optimal Quantized Non-Bayesian Quickest Change Detection With Energy Harvesting

In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered by harvested energy from the environment. The underlying random process being monitored by the sensors is subject to change in its distribut...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on green communications and networking Ročník 4; číslo 2; s. 433 - 447
Hlavní autoři: Biswas, Sinchan, Dey, Subhrakanti, Knorn, Steffi, Ahlen, Anders
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2473-2400, 2473-2400
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered by harvested energy from the environment. The underlying random process being monitored by the sensors is subject to change in its distribution at an unknown but deterministic time point, and the sensors take samples (sensing) periodically, compute the likelihood ratio based on the distributions before and after the change, quantize it and send it to a remote fusion centre (FC) over fading channels for performing a sequential test to detect the change. Due to the unpredictable and intermittent nature of harvested energy arrivals, the sensors need to decide whether they want to sense, and at what rate they want to quantize their information before sending them to the FC, since higher quantization rates result in higher accuracy and better detection performance, at the cost of higher energy consumption. We formulate an optimal sensing and quantization rate allocation problem (in order to minimize the expected detection delay subject to false alarm rate constraint) based on the availability (at the FC) of non-causal and causal information of sensors' energy state information, and channel state information between the sensors and the FC. Motivated by the asymptotically inverse relationship between the expected detection delay (under a vanishingly small probability of false alarm) and the Kullback-Leibler (KL) divergence measure at the FC, we maximize an expected sum of the KL divergence measure over a finite horizon to obtain the optimal sensing and quantization rate allocation policy, subject to energy causality constraints at each sensor. The optimal solution is obtained using a typical dynamic programming based technique, and based on the optimal quantization rate, the optimal quantization thresholds are found by maximizing the KL information measure per slot. We also provide suboptimal threshold design policies using uniform quantization and an asymptotically optimal quantization policy for higher number of quantization bits. We provide an asymptotic approximation for the loss due to quantization of the KL measure, and also consider an alternative optimization problem with minimizing the expected sum of the inverse the KL divergence measure as the cost per time slot. Numerical results are provided comparing the various optimal and suboptimal quantization strategies for both optimization problem formulations, illustrating the comparative performance of these strategies at different regimes of quantization rates.
AbstractList In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered by harvested energy from the environment. The underlying random process being monitored by the sensors is subject to change in its distribution at an unknown but deterministic time point, and the sensors take samples (sensing) periodically, compute the likelihood ratio based on the distributions before and after the change, quantize it and send it to a remote fusion centre (FC) over fading channels for performing a sequential test to detect the change. Due to the unpredictable and intermittent nature of harvested energy arrivals, the sensors need to decide whether they want to sense, and at what rate they want to quantize their information before sending them to the FC, since higher quantization rates result in higher accuracy and better detection performance, at the cost of higher energy consumption. We formulate an optimal sensing and quantization rate allocation problem (in order to minimize the expected detection delay subject to false alarm rate constraint) based on the availability (at the FC) of non-causal and causal information of sensors' energy state information, and channel state information between the sensors and the FC. Motivated by the asymptotically inverse relationship between the expected detection delay (under a vanishingly small probability of false alarm) and the Kullback-Leibler (KL) divergence measure at the FC, we maximize an expected sum of the KL divergence measure over a finite horizon to obtain the optimal sensing and quantization rate allocation policy, subject to energy causality constraints at each sensor. The optimal solution is obtained using a typical dynamic programming based technique, and based on the optimal quantization rate, the optimal quantization thresholds are found by maximizing the KL information measure per slot. We also provide suboptimal threshold design policies using uniform quantization and an asymptotically optimal quantization policy for higher number of quantization bits. We provide an asymptotic approximation for the loss due to quantization of the KL measure, and also consider an alternative optimization problem with minimizing the expected sum of the inverse the KL divergence measure as the cost per time slot. Numerical results are provided comparing the various optimal and suboptimal quantization strategies for both optimization problem formulations, illustrating the comparative performance of these strategies at different regimes of quantization rates.
Author Biswas, Sinchan
Knorn, Steffi
Dey, Subhrakanti
Ahlen, Anders
Author_xml – sequence: 1
  givenname: Sinchan
  orcidid: 0000-0001-5219-8248
  surname: Biswas
  fullname: Biswas, Sinchan
  organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden
– sequence: 2
  givenname: Subhrakanti
  orcidid: 0000-0003-0762-5743
  surname: Dey
  fullname: Dey, Subhrakanti
  email: subhra.dey@mu.ie
  organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden
– sequence: 3
  givenname: Steffi
  orcidid: 0000-0002-4413-4225
  surname: Knorn
  fullname: Knorn, Steffi
  organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden
– sequence: 4
  givenname: Anders
  orcidid: 0000-0001-9066-5468
  surname: Ahlen
  fullname: Ahlen, Anders
  organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409392$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kMtKAzEUhoMoWKsPIG4G3Do1J5lbllq1FYpF8bIM6cxJG62Zmsko9enNUBFx4Sq37z_n5Nsj27a2SMgh0AEAFaf3o-HNgFEQAyYyAOBbpMeSnMcsoXT7136XHDTNM6WUiRQywXvkbmqj6cqbV7WMbltlvfnEKrqpbXyu1tgYZcO1KV-w8dFwoewcowv0WHpT2-jJ-EV0adHN19FYufcAGTvfJztaLRs8-F775OHq8n44jifT0fXwbBKXPOc-VmmhK6EAq3BOdAazPKOgIVeoq0pgkSaoVarSbFbMRAmFTovujQtMOAPN--RkU7f5wFU7kysXfuHWslZGXpjHM1m7uWxbmVDBBQv48QZfufqtDaPK57p1Nkwog5o054xlECjYUKWrm8ah_ikLVHayZSdbdrLlt-yQyf9kSuNVZ8g7ZZb_Jo82SYOIP50KwfOUcf4FicaOfg
CitedBy_id crossref_primary_10_1109_TCOMM_2023_3300335
crossref_primary_10_1109_TAES_2022_3156109
crossref_primary_10_1109_TSP_2021_3134885
crossref_primary_10_1109_ACCESS_2022_3170463
crossref_primary_10_1109_TSP_2024_3350340
crossref_primary_10_1109_JSEN_2023_3317882
Cites_doi 10.1109/TIT.1979.1056067
10.1109/TIT.2012.2204389
10.1109/ICC.2004.1312612
10.1007/s11222-017-9775-1
10.1080/07474940802446236
10.1109/18.923755
10.1109/JSAC.2018.2872380
10.1214/aos/1176346587
10.1109/TWC.2013.011713.120621
10.1109/TIE.2009.2039455
10.1017/CBO9780511807213
10.1109/TIE.2009.2015754
10.1109/JSAC.2018.2872379
10.1109/TIT.2014.2341607
10.1109/TWC.2016.2627047
10.1017/CBO9780511754678
10.1109/ITA.2011.5743616
10.1109/TWC.2012.012412.110805
10.1109/MCOM.2002.1024422
10.1109/CAMSAP.2011.6135980
10.1109/JPROC.2003.814918
10.1109/18.391237
10.1109/ICIF.2006.301578
10.1109/TIT.2003.814482
10.1109/GLOCOM.2018.8647715
10.1109/TSP.2013.2273442
10.1109/TWC.2010.04.080749
10.1109/TIT.2018.2791401
10.1109/JSAC.2018.2872615
10.1109/TWC.2013.010213.130484
10.1109/TWC.2012.032812.110813
10.1214/aoms/1177693055
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ADTPV
AOWAS
DF2
DOI 10.1109/TGCN.2019.2961113
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2473-2400
EndPage 447
ExternalDocumentID oai_DiVA_org_uu_409392
10_1109_TGCN_2019_2961113
8937523
Genre orig-research
GrantInformation_xml – fundername: Swedish Research Council
  grantid: Dnr 621-2013-5395
  funderid: 10.13039/501100004359
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c373t-a58fd9a1edc374f61b7601f17aefdd9e854efa5a56b8b9c18f587aef39e4321f3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722240800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-2400
IngestDate Tue Nov 04 16:57:40 EST 2025
Fri Jul 25 03:02:00 EDT 2025
Sat Nov 29 02:22:26 EST 2025
Tue Nov 18 22:26:22 EST 2025
Wed Aug 27 02:39:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-a58fd9a1edc374f61b7601f17aefdd9e854efa5a56b8b9c18f587aef39e4321f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0762-5743
0000-0001-9066-5468
0000-0002-4413-4225
0000-0001-5219-8248
OpenAccessLink http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409392
PQID 2405732261
PQPubID 4437214
PageCount 15
ParticipantIDs crossref_primary_10_1109_TGCN_2019_2961113
swepub_primary_oai_DiVA_org_uu_409392
proquest_journals_2405732261
crossref_citationtrail_10_1109_TGCN_2019_2961113
ieee_primary_8937523
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on green communications and networking
PublicationTitleAbbrev TGCN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
kay (ref17) 1998
tran (ref21) 2013
ref33
ref11
ref32
ref10
ref2
ref1
ref16
ref19
ref18
bertsekas (ref36) 2000
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref8
ref7
tartakovsky (ref30) 2015
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1109/TIT.1979.1056067
– ident: ref6
  doi: 10.1109/TIT.2012.2204389
– ident: ref32
  doi: 10.1109/ICC.2004.1312612
– ident: ref20
  doi: 10.1007/s11222-017-9775-1
– year: 2013
  ident: ref21
  article-title: Change detection in streaming data
– ident: ref19
  doi: 10.1080/07474940802446236
– ident: ref28
  doi: 10.1109/18.923755
– ident: ref16
  doi: 10.1109/JSAC.2018.2872380
– ident: ref24
  doi: 10.1214/aos/1176346587
– ident: ref14
  doi: 10.1109/TWC.2013.011713.120621
– ident: ref3
  doi: 10.1109/TIE.2009.2039455
– ident: ref31
  doi: 10.1017/CBO9780511807213
– ident: ref1
  doi: 10.1109/TIE.2009.2015754
– ident: ref15
  doi: 10.1109/JSAC.2018.2872379
– ident: ref26
  doi: 10.1109/TIT.2014.2341607
– ident: ref10
  doi: 10.1109/TWC.2016.2627047
– ident: ref18
  doi: 10.1017/CBO9780511754678
– ident: ref22
  doi: 10.1109/ITA.2011.5743616
– ident: ref7
  doi: 10.1109/TWC.2012.012412.110805
– ident: ref4
  doi: 10.1109/MCOM.2002.1024422
– year: 2015
  ident: ref30
  publication-title: Sequential Analysis Hypothesis Testing and Change-Point Detection
– year: 2000
  ident: ref36
  publication-title: Dynamic Programming and Optimal Control
– ident: ref9
  doi: 10.1109/CAMSAP.2011.6135980
– ident: ref2
  doi: 10.1109/JPROC.2003.814918
– ident: ref35
  doi: 10.1109/18.391237
– ident: ref27
  doi: 10.1109/ICIF.2006.301578
– ident: ref34
  doi: 10.1109/TIT.2003.814482
– ident: ref29
  doi: 10.1109/GLOCOM.2018.8647715
– ident: ref25
  doi: 10.1109/TSP.2013.2273442
– ident: ref12
  doi: 10.1109/TWC.2010.04.080749
– ident: ref8
  doi: 10.1109/TIT.2018.2791401
– year: 1998
  ident: ref17
  publication-title: Fundamentals of Statistical Signal Processing Detection Theory
– ident: ref11
  doi: 10.1109/JSAC.2018.2872615
– ident: ref13
  doi: 10.1109/TWC.2013.010213.130484
– ident: ref5
  doi: 10.1109/TWC.2012.032812.110813
– ident: ref23
  doi: 10.1214/aoms/1177693055
SSID ssj0002951693
Score 2.1703577
Snippet In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 433
SubjectTerms Asymptotic methods
Asymptotic properties
Batteries
Bayesian analysis
Change detection
Decentralized Change-Point Detection
Delays
Detection
Dynamic programming
Electrical Engineering with specialization in Signal Processing
Elektroteknik med inriktning mot signalbehandling
Energy
Energy consumption
Energy harvesting
Environmental monitoring
False alarms
Likelihood ratio
Mathematical analysis
Measurement
Optimization
Quantization
Quantization (signal)
Random processes
Robot sensing systems
Sensor Networks
Sensors
Wireless sensor networks
Title On Optimal Quantized Non-Bayesian Quickest Change Detection With Energy Harvesting
URI https://ieeexplore.ieee.org/document/8937523
https://www.proquest.com/docview/2405732261
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409392
Volume 4
WOSCitedRecordID wos000722240800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2473-2400
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951693
  issn: 2473-2400
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEB5UPOjBXXz6lBz0IlZft7Q5PveDPBfcbiHNogXtE18r6K83k9aiIIK3LkkJ8zXJzGTmG4DNOBKZoTr1TBiEXiRV4glBkYtQCiOkVJErB3R7lgwG6f09uxiDnTYXRmvtgs_0Ll66s3w1lBW6yvZwb7WG0ziMJwmtc7Vaf0rA8MQnbA4u_R7buz45GGDsFtsNGMWK6j-2HldL5ada-Z0q1G0vx7P_G9gczDRqJOnXuM_DmC4WYPobueAiXJ0X5NwuCM-23WVlBZh_aEUGw8LbF-8acyft49xO4lFJ6hwDcqhLF5lVkLu8fCRHLi-QYPkg5OIoHpbg5vjo-uDUayooeDJMwtITcWoUE75W9j4y1M8wBMb4idBGKabTONJGxCKmWZox6acmTvFdyHQUBr4Jl2GiGBZ6BQgVGYZwIju9VUJUzBSjkQp6kWLSqMx0oPclXC4benGscvHEnZnRYxzx4IgHb_DowHbb5aXm1vir8SLKvW3YiLwD3S8EeTP7RjxALdSuVNTvwFaNatsP6bQP89s-twDyquLWvrUq4urvX1-DqQDta-d16cJE-VrpdZiUb2U-et1wP-An5Q_bFQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wEB6xSbQHdtRXoPgAl4pAFicvPlKWgngEih7LzXK8tJEgr-IlldpfX48TIpAQErcsdmTNF9sz45lvALZiKnKT6NQzURh5VKq-J0SCXIRSGCGloq4c0M2gn2Xp3R27nICdLhdGa-2Cz_QuXrqzfDWSNbrK9nBvtYbTJEzHlIZ-k63VeVRChmc-UXt0Gfhsb_j9IMPoLbYbsgRrqr_YfFw1lZeK5XOyULfBHM-_b2gLMNcqkmS_QX4RJnS5BB-f0Qsuw9VFSS7skvBg2_2orQiLf1qRbFR638RfjdmT9nFhp_G4Ik2WATnUlYvNKsltUf0iRy4zkGABIWTjKH-uwPXx0fDgxGtrKHgy6keVJ-LUKCYCrew9NUmQYxCMCfpCG6WYTmOqjYhFnORpzmSQmjjFdxHTNAoDE63CVDkq9ScgicgxiBP56a0aomKmWEJV6FPFpFG56YH_JFwuW4JxrHNxz52h4TOOeHDEg7d49OBr1-V3w67xVuNllHvXsBV5D9afEOTt_BvzEPVQu1YlQQ-2G1S7fkiofVjc7HMLIK9rbi1cqyR-fv3rmzB7Mjwf8MFpdrYGH0K0tp0PZh2mqsdab8CM_FMV48cv7mf8D2-A3lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Optimal+Quantized+Non-Bayesian+Quickest+Change+Detection+With+Energy+Harvesting&rft.jtitle=IEEE+transactions+on+green+communications+and+networking&rft.au=Biswas%2C+Sinchan&rft.au=Dey%2C+Subhrakanti&rft.au=Knorn%2C+Steffi&rft.au=Ahlen%2C+Anders&rft.date=2020-06-01&rft.issn=2473-2400&rft.eissn=2473-2400&rft.volume=4&rft.issue=2&rft.spage=433&rft.epage=447&rft_id=info:doi/10.1109%2FTGCN.2019.2961113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGCN_2019_2961113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2400&client=summon