On Optimal Quantized Non-Bayesian Quickest Change Detection With Energy Harvesting
In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered by harvested energy from the environment. The underlying random process being monitored by the sensors is subject to change in its distribut...
Uloženo v:
| Vydáno v: | IEEE transactions on green communications and networking Ročník 4; číslo 2; s. 433 - 447 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2473-2400, 2473-2400 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered by harvested energy from the environment. The underlying random process being monitored by the sensors is subject to change in its distribution at an unknown but deterministic time point, and the sensors take samples (sensing) periodically, compute the likelihood ratio based on the distributions before and after the change, quantize it and send it to a remote fusion centre (FC) over fading channels for performing a sequential test to detect the change. Due to the unpredictable and intermittent nature of harvested energy arrivals, the sensors need to decide whether they want to sense, and at what rate they want to quantize their information before sending them to the FC, since higher quantization rates result in higher accuracy and better detection performance, at the cost of higher energy consumption. We formulate an optimal sensing and quantization rate allocation problem (in order to minimize the expected detection delay subject to false alarm rate constraint) based on the availability (at the FC) of non-causal and causal information of sensors' energy state information, and channel state information between the sensors and the FC. Motivated by the asymptotically inverse relationship between the expected detection delay (under a vanishingly small probability of false alarm) and the Kullback-Leibler (KL) divergence measure at the FC, we maximize an expected sum of the KL divergence measure over a finite horizon to obtain the optimal sensing and quantization rate allocation policy, subject to energy causality constraints at each sensor. The optimal solution is obtained using a typical dynamic programming based technique, and based on the optimal quantization rate, the optimal quantization thresholds are found by maximizing the KL information measure per slot. We also provide suboptimal threshold design policies using uniform quantization and an asymptotically optimal quantization policy for higher number of quantization bits. We provide an asymptotic approximation for the loss due to quantization of the KL measure, and also consider an alternative optimization problem with minimizing the expected sum of the inverse the KL divergence measure as the cost per time slot. Numerical results are provided comparing the various optimal and suboptimal quantization strategies for both optimization problem formulations, illustrating the comparative performance of these strategies at different regimes of quantization rates. |
|---|---|
| AbstractList | In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered by harvested energy from the environment. The underlying random process being monitored by the sensors is subject to change in its distribution at an unknown but deterministic time point, and the sensors take samples (sensing) periodically, compute the likelihood ratio based on the distributions before and after the change, quantize it and send it to a remote fusion centre (FC) over fading channels for performing a sequential test to detect the change. Due to the unpredictable and intermittent nature of harvested energy arrivals, the sensors need to decide whether they want to sense, and at what rate they want to quantize their information before sending them to the FC, since higher quantization rates result in higher accuracy and better detection performance, at the cost of higher energy consumption. We formulate an optimal sensing and quantization rate allocation problem (in order to minimize the expected detection delay subject to false alarm rate constraint) based on the availability (at the FC) of non-causal and causal information of sensors' energy state information, and channel state information between the sensors and the FC. Motivated by the asymptotically inverse relationship between the expected detection delay (under a vanishingly small probability of false alarm) and the Kullback-Leibler (KL) divergence measure at the FC, we maximize an expected sum of the KL divergence measure over a finite horizon to obtain the optimal sensing and quantization rate allocation policy, subject to energy causality constraints at each sensor. The optimal solution is obtained using a typical dynamic programming based technique, and based on the optimal quantization rate, the optimal quantization thresholds are found by maximizing the KL information measure per slot. We also provide suboptimal threshold design policies using uniform quantization and an asymptotically optimal quantization policy for higher number of quantization bits. We provide an asymptotic approximation for the loss due to quantization of the KL measure, and also consider an alternative optimization problem with minimizing the expected sum of the inverse the KL divergence measure as the cost per time slot. Numerical results are provided comparing the various optimal and suboptimal quantization strategies for both optimization problem formulations, illustrating the comparative performance of these strategies at different regimes of quantization rates. |
| Author | Biswas, Sinchan Knorn, Steffi Dey, Subhrakanti Ahlen, Anders |
| Author_xml | – sequence: 1 givenname: Sinchan orcidid: 0000-0001-5219-8248 surname: Biswas fullname: Biswas, Sinchan organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden – sequence: 2 givenname: Subhrakanti orcidid: 0000-0003-0762-5743 surname: Dey fullname: Dey, Subhrakanti email: subhra.dey@mu.ie organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden – sequence: 3 givenname: Steffi orcidid: 0000-0002-4413-4225 surname: Knorn fullname: Knorn, Steffi organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden – sequence: 4 givenname: Anders orcidid: 0000-0001-9066-5468 surname: Ahlen fullname: Ahlen, Anders organization: Division of Signals and Systems, Uppsala University, Uppsala, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409392$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp9kMtKAzEUhoMoWKsPIG4G3Do1J5lbllq1FYpF8bIM6cxJG62Zmsko9enNUBFx4Sq37z_n5Nsj27a2SMgh0AEAFaf3o-HNgFEQAyYyAOBbpMeSnMcsoXT7136XHDTNM6WUiRQywXvkbmqj6cqbV7WMbltlvfnEKrqpbXyu1tgYZcO1KV-w8dFwoewcowv0WHpT2-jJ-EV0adHN19FYufcAGTvfJztaLRs8-F775OHq8n44jifT0fXwbBKXPOc-VmmhK6EAq3BOdAazPKOgIVeoq0pgkSaoVarSbFbMRAmFTovujQtMOAPN--RkU7f5wFU7kysXfuHWslZGXpjHM1m7uWxbmVDBBQv48QZfufqtDaPK57p1Nkwog5o054xlECjYUKWrm8ah_ikLVHayZSdbdrLlt-yQyf9kSuNVZ8g7ZZb_Jo82SYOIP50KwfOUcf4FicaOfg |
| CitedBy_id | crossref_primary_10_1109_TCOMM_2023_3300335 crossref_primary_10_1109_TAES_2022_3156109 crossref_primary_10_1109_TSP_2021_3134885 crossref_primary_10_1109_ACCESS_2022_3170463 crossref_primary_10_1109_TSP_2024_3350340 crossref_primary_10_1109_JSEN_2023_3317882 |
| Cites_doi | 10.1109/TIT.1979.1056067 10.1109/TIT.2012.2204389 10.1109/ICC.2004.1312612 10.1007/s11222-017-9775-1 10.1080/07474940802446236 10.1109/18.923755 10.1109/JSAC.2018.2872380 10.1214/aos/1176346587 10.1109/TWC.2013.011713.120621 10.1109/TIE.2009.2039455 10.1017/CBO9780511807213 10.1109/TIE.2009.2015754 10.1109/JSAC.2018.2872379 10.1109/TIT.2014.2341607 10.1109/TWC.2016.2627047 10.1017/CBO9780511754678 10.1109/ITA.2011.5743616 10.1109/TWC.2012.012412.110805 10.1109/MCOM.2002.1024422 10.1109/CAMSAP.2011.6135980 10.1109/JPROC.2003.814918 10.1109/18.391237 10.1109/ICIF.2006.301578 10.1109/TIT.2003.814482 10.1109/GLOCOM.2018.8647715 10.1109/TSP.2013.2273442 10.1109/TWC.2010.04.080749 10.1109/TIT.2018.2791401 10.1109/JSAC.2018.2872615 10.1109/TWC.2013.010213.130484 10.1109/TWC.2012.032812.110813 10.1214/aoms/1177693055 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M ADTPV AOWAS DF2 |
| DOI | 10.1109/TGCN.2019.2961113 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2473-2400 |
| EndPage | 447 |
| ExternalDocumentID | oai_DiVA_org_uu_409392 10_1109_TGCN_2019_2961113 8937523 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Swedish Research Council grantid: Dnr 621-2013-5395 funderid: 10.13039/501100004359 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c373t-a58fd9a1edc374f61b7601f17aefdd9e854efa5a56b8b9c18f587aef39e4321f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722240800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-2400 |
| IngestDate | Tue Nov 04 16:57:40 EST 2025 Fri Jul 25 03:02:00 EDT 2025 Sat Nov 29 02:22:26 EST 2025 Tue Nov 18 22:26:22 EST 2025 Wed Aug 27 02:39:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-a58fd9a1edc374f61b7601f17aefdd9e854efa5a56b8b9c18f587aef39e4321f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0762-5743 0000-0001-9066-5468 0000-0002-4413-4225 0000-0001-5219-8248 |
| OpenAccessLink | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409392 |
| PQID | 2405732261 |
| PQPubID | 4437214 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TGCN_2019_2961113 swepub_primary_oai_DiVA_org_uu_409392 proquest_journals_2405732261 crossref_citationtrail_10_1109_TGCN_2019_2961113 ieee_primary_8937523 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on green communications and networking |
| PublicationTitleAbbrev | TGCN |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 kay (ref17) 1998 tran (ref21) 2013 ref33 ref11 ref32 ref10 ref2 ref1 ref16 ref19 ref18 bertsekas (ref36) 2000 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 tartakovsky (ref30) 2015 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref33 doi: 10.1109/TIT.1979.1056067 – ident: ref6 doi: 10.1109/TIT.2012.2204389 – ident: ref32 doi: 10.1109/ICC.2004.1312612 – ident: ref20 doi: 10.1007/s11222-017-9775-1 – year: 2013 ident: ref21 article-title: Change detection in streaming data – ident: ref19 doi: 10.1080/07474940802446236 – ident: ref28 doi: 10.1109/18.923755 – ident: ref16 doi: 10.1109/JSAC.2018.2872380 – ident: ref24 doi: 10.1214/aos/1176346587 – ident: ref14 doi: 10.1109/TWC.2013.011713.120621 – ident: ref3 doi: 10.1109/TIE.2009.2039455 – ident: ref31 doi: 10.1017/CBO9780511807213 – ident: ref1 doi: 10.1109/TIE.2009.2015754 – ident: ref15 doi: 10.1109/JSAC.2018.2872379 – ident: ref26 doi: 10.1109/TIT.2014.2341607 – ident: ref10 doi: 10.1109/TWC.2016.2627047 – ident: ref18 doi: 10.1017/CBO9780511754678 – ident: ref22 doi: 10.1109/ITA.2011.5743616 – ident: ref7 doi: 10.1109/TWC.2012.012412.110805 – ident: ref4 doi: 10.1109/MCOM.2002.1024422 – year: 2015 ident: ref30 publication-title: Sequential Analysis Hypothesis Testing and Change-Point Detection – year: 2000 ident: ref36 publication-title: Dynamic Programming and Optimal Control – ident: ref9 doi: 10.1109/CAMSAP.2011.6135980 – ident: ref2 doi: 10.1109/JPROC.2003.814918 – ident: ref35 doi: 10.1109/18.391237 – ident: ref27 doi: 10.1109/ICIF.2006.301578 – ident: ref34 doi: 10.1109/TIT.2003.814482 – ident: ref29 doi: 10.1109/GLOCOM.2018.8647715 – ident: ref25 doi: 10.1109/TSP.2013.2273442 – ident: ref12 doi: 10.1109/TWC.2010.04.080749 – ident: ref8 doi: 10.1109/TIT.2018.2791401 – year: 1998 ident: ref17 publication-title: Fundamentals of Statistical Signal Processing Detection Theory – ident: ref11 doi: 10.1109/JSAC.2018.2872615 – ident: ref13 doi: 10.1109/TWC.2013.010213.130484 – ident: ref5 doi: 10.1109/TWC.2012.032812.110813 – ident: ref23 doi: 10.1214/aoms/1177693055 |
| SSID | ssj0002951693 |
| Score | 2.1703577 |
| Snippet | In this paper, we consider a problem of decentralized non-Bayesian quickest change detection using a wireless sensor network where the sensor nodes are powered... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 433 |
| SubjectTerms | Asymptotic methods Asymptotic properties Batteries Bayesian analysis Change detection Decentralized Change-Point Detection Delays Detection Dynamic programming Electrical Engineering with specialization in Signal Processing Elektroteknik med inriktning mot signalbehandling Energy Energy consumption Energy harvesting Environmental monitoring False alarms Likelihood ratio Mathematical analysis Measurement Optimization Quantization Quantization (signal) Random processes Robot sensing systems Sensor Networks Sensors Wireless sensor networks |
| Title | On Optimal Quantized Non-Bayesian Quickest Change Detection With Energy Harvesting |
| URI | https://ieeexplore.ieee.org/document/8937523 https://www.proquest.com/docview/2405732261 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409392 |
| Volume | 4 |
| WOSCitedRecordID | wos000722240800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2473-2400 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951693 issn: 2473-2400 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEB5UPOjBXXz6lBz0IlZft7Q5PveDPBfcbiHNogXtE18r6K83k9aiIIK3LkkJ8zXJzGTmG4DNOBKZoTr1TBiEXiRV4glBkYtQCiOkVJErB3R7lgwG6f09uxiDnTYXRmvtgs_0Ll66s3w1lBW6yvZwb7WG0ziMJwmtc7Vaf0rA8MQnbA4u_R7buz45GGDsFtsNGMWK6j-2HldL5ada-Z0q1G0vx7P_G9gczDRqJOnXuM_DmC4WYPobueAiXJ0X5NwuCM-23WVlBZh_aEUGw8LbF-8acyft49xO4lFJ6hwDcqhLF5lVkLu8fCRHLi-QYPkg5OIoHpbg5vjo-uDUayooeDJMwtITcWoUE75W9j4y1M8wBMb4idBGKabTONJGxCKmWZox6acmTvFdyHQUBr4Jl2GiGBZ6BQgVGYZwIju9VUJUzBSjkQp6kWLSqMx0oPclXC4benGscvHEnZnRYxzx4IgHb_DowHbb5aXm1vir8SLKvW3YiLwD3S8EeTP7RjxALdSuVNTvwFaNatsP6bQP89s-twDyquLWvrUq4urvX1-DqQDta-d16cJE-VrpdZiUb2U-et1wP-An5Q_bFQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wEB6xSbQHdtRXoPgAl4pAFicvPlKWgngEih7LzXK8tJEgr-IlldpfX48TIpAQErcsdmTNF9sz45lvALZiKnKT6NQzURh5VKq-J0SCXIRSGCGloq4c0M2gn2Xp3R27nICdLhdGa-2Cz_QuXrqzfDWSNbrK9nBvtYbTJEzHlIZ-k63VeVRChmc-UXt0Gfhsb_j9IMPoLbYbsgRrqr_YfFw1lZeK5XOyULfBHM-_b2gLMNcqkmS_QX4RJnS5BB-f0Qsuw9VFSS7skvBg2_2orQiLf1qRbFR638RfjdmT9nFhp_G4Ik2WATnUlYvNKsltUf0iRy4zkGABIWTjKH-uwPXx0fDgxGtrKHgy6keVJ-LUKCYCrew9NUmQYxCMCfpCG6WYTmOqjYhFnORpzmSQmjjFdxHTNAoDE63CVDkq9ScgicgxiBP56a0aomKmWEJV6FPFpFG56YH_JFwuW4JxrHNxz52h4TOOeHDEg7d49OBr1-V3w67xVuNllHvXsBV5D9afEOTt_BvzEPVQu1YlQQ-2G1S7fkiofVjc7HMLIK9rbi1cqyR-fv3rmzB7Mjwf8MFpdrYGH0K0tp0PZh2mqsdab8CM_FMV48cv7mf8D2-A3lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Optimal+Quantized+Non-Bayesian+Quickest+Change+Detection+With+Energy+Harvesting&rft.jtitle=IEEE+transactions+on+green+communications+and+networking&rft.au=Biswas%2C+Sinchan&rft.au=Dey%2C+Subhrakanti&rft.au=Knorn%2C+Steffi&rft.au=Ahlen%2C+Anders&rft.date=2020-06-01&rft.issn=2473-2400&rft.eissn=2473-2400&rft.volume=4&rft.issue=2&rft.spage=433&rft.epage=447&rft_id=info:doi/10.1109%2FTGCN.2019.2961113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGCN_2019_2961113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2400&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2400&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2400&client=summon |