Semantic Relational Object Tracking
This paper addresses the topic of semantic world modeling by conjoining probabilistic reasoning and object anchoring. The proposed approach uses a so-called bottom-up object anchoring method that relies on rich continuous attribute values measured from perceptual sensor data. A novel anchoring match...
Uloženo v:
| Vydáno v: | IEEE transactions on cognitive and developmental systems Ročník 12; číslo 1; s. 84 - 97 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2379-8920, 2379-8939, 2379-8939 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper addresses the topic of semantic world modeling by conjoining probabilistic reasoning and object anchoring. The proposed approach uses a so-called bottom-up object anchoring method that relies on rich continuous attribute values measured from perceptual sensor data. A novel anchoring matching function learns to maintain object entities in space and time and is validated using a large set of trained humanly annotated ground truth data of real-world objects. For more complex scenarios, a high-level probabilistic object tracker has been integrated with the anchoring framework and handles the tracking of occluded objects via reasoning about the state of unobserved objects. We demonstrate the performance of our integrated approach through scenarios such as the shell game scenario, where we illustrate how anchored objects are retained by preserving relations through probabilistic reasoning. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2379-8920 2379-8939 2379-8939 |
| DOI: | 10.1109/TCDS.2019.2915763 |