Spaces of generalized splines over T-meshes

We consider a class of non-polynomial spaces, namely a noteworthy case of Extended Chebyshev spaces, and we generalize the concept of polynomial spline space over T-mesh to this non-polynomial setting: in other words, we focus on a class of spaces spanned, in each cell of the T-mesh, both by polynom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 294; S. 102 - 123
Hauptverfasser: Bracco, Cesare, Roman, Fabio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2016
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a class of non-polynomial spaces, namely a noteworthy case of Extended Chebyshev spaces, and we generalize the concept of polynomial spline space over T-mesh to this non-polynomial setting: in other words, we focus on a class of spaces spanned, in each cell of the T-mesh, both by polynomial and by suitably-chosen non-polynomial functions, which we will refer to as generalized splines over T-meshes. For such spaces, we provide, under certain conditions on the regularity of the space, a study of the dimension and of the basis, based on the notion of minimal determining set, as well as some results about the dimension of refined and merged T-meshes. Finally, we study the approximation power of the just constructed spline spaces.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2015.08.006