Adaptive hybrid architecture for enhancement of the complex hydroclimatic system and assessment of freshwater security

Future freshwater security relies on hydroclimatic (HC) shifts and regimes for sustainable development. The approximation of the HC system faces major uncertainties and complexities due to the incorporation of heavy datasets, characteristics, and constraints. The proposed study focused on the parall...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hydroinformatics Ročník 23; číslo 5; s. 950 - 965
Hlavní autori: Budamala, Venkatesh, Mahindrakar, Amit Baburao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London IWA Publishing 01.09.2021
Predmet:
ISSN:1464-7141, 1465-1734
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Future freshwater security relies on hydroclimatic (HC) shifts and regimes for sustainable development. The approximation of the HC system faces major uncertainties and complexities due to the incorporation of heavy datasets, characteristics, and constraints. The proposed study focused on the parallel computing of emulator modeling-based spatial optimization to enhance the HC systems with the perspective of future freshwater security in the Upper Chattahoochee River basin (UCR). Here, the framework compiles both physical and machine learning concepts with adaptive technology for the replication of real-world scenarios. Besides, it contains 2Emulator Model Fitting, Spatial Optimization, Parallel Computing, and Initial and Adaptive sampling to upgrade model efficiency, while UCR has inadequate groundwater and the assessment of freshwater security in UCR is more necessary for varying future climatic conditions. The results displayed that the proposed spatial optimization algorithm proved to be an effective and efficient approach in the approximation of HC models. The assessment of water security in UCR was showed in terms of scarcity and vulnerability indicators for median and low-level conditions, respectively. Moreover, this study provides the potential framework for the enhancement of physical model predictions with the incorporation of hybrid concepts for problem-solving technology which can provide significant information on HC issues.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2021.182