Macdonald Polynomials and Multivariable Basic Hypergeometric Series

We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications Jg. 3; S. 056
1. Verfasser: Schlosser, Michael J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kiev National Academy of Sciences of Ukraine 01.01.2007
National Academy of Science of Ukraine
Schlagworte:
ISSN:1815-0659, 1815-0659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very-well-poised 6?5 summation formula. We derive several new related identities including multivariate extensions of Jackson's very-well-poised 8?7 summation. Motivated by our basic hypergeometric analysis, we propose an extension of Macdonald polynomials to Macdonald symmetric functions indexed by partitions with complex parts. These appear to possess nice properties.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2007.056