Macdonald Polynomials and Multivariable Basic Hypergeometric Series

We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Symmetry, integrability and geometry, methods and applications Ročník 3; s. 056
Hlavní autor: Schlosser, Michael J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kiev National Academy of Sciences of Ukraine 01.01.2007
National Academy of Science of Ukraine
Témata:
ISSN:1815-0659, 1815-0659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very-well-poised 6?5 summation formula. We derive several new related identities including multivariate extensions of Jackson's very-well-poised 8?7 summation. Motivated by our basic hypergeometric analysis, we propose an extension of Macdonald polynomials to Macdonald symmetric functions indexed by partitions with complex parts. These appear to possess nice properties.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2007.056