Spectral clustering for divide-and-conquer graph matching
•We present a novel divide-and-conquer bijective graph matching algorithm.•The algorithm is fully parallelizable, and scales to match “big data” graphs.•We demonstrate the effectiveness of the algorithm by matching DTMRI human connectomes. We present a parallelized bijective graph matching algorithm...
Uloženo v:
| Vydáno v: | Parallel computing Ročník 47; s. 70 - 87 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2015
|
| Témata: | |
| ISSN: | 0167-8191, 1872-7336 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •We present a novel divide-and-conquer bijective graph matching algorithm.•The algorithm is fully parallelizable, and scales to match “big data” graphs.•We demonstrate the effectiveness of the algorithm by matching DTMRI human connectomes.
We present a parallelized bijective graph matching algorithm that leverages seeds and is designed to match very large graphs. Our algorithm combines spectral graph embedding with existing state-of-the-art seeded graph matching procedures. We justify our approach by proving that modestly correlated, large stochastic block model random graphs are correctly matched utilizing very few seeds through our divide-and-conquer procedure. We also demonstrate the effectiveness of our approach in matching very large graphs in simulated and real data examples, showing up to a factor of 8 improvement in runtime with minimal sacrifice in accuracy. |
|---|---|
| ISSN: | 0167-8191 1872-7336 |
| DOI: | 10.1016/j.parco.2015.03.004 |