From regular expressions to finite automata
There are three classical algorithms to compute a finite automaton from a regular expression. The Brzozowski algorithm yields a deterministic automaton, the Glushkov algorithm a nondeterministic one, and the general step by step method generally yields a NFA with ϵ-transitions. Berry and Sethi have...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 72; číslo 4; s. 415 - 431 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Gordon and Breach Science Publishers
01.01.1999
Taylor and Francis |
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | There are three classical algorithms to compute a finite automaton from a regular expression. The Brzozowski algorithm yields a deterministic automaton, the Glushkov algorithm a nondeterministic one, and the general step by step method generally yields a NFA with ϵ-transitions. Berry and Sethi have adapted Brzozowski's algorithm to compute the Glushkov automaton of an expression. We describe a variant of the step by step construction which associates standard and trim automata to regular languages. We show that the automaton constructed by the variant and the Glushkov automaton (computed by Berry-Sethi algorithm) are isomorphic. |
|---|---|
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207169908804865 |