Selective Synthesis and Structural Transformation of a 4‐Ravel Containing Four Crossings and Featuring CpRh/Ir Fragments
Intricately interwoven topologies are continually being synthesized and are ultimately equally versatile and significant at the nanoscale level; however, reports concerning ravel structures, which are highly entwined new topological species, are extremely rare and fraught with tremendous synthesis c...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 62; no. 20; pp. e202301516 - n/a |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
08.05.2023
|
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Intricately interwoven topologies are continually being synthesized and are ultimately equally versatile and significant at the nanoscale level; however, reports concerning ravel structures, which are highly entwined new topological species, are extremely rare and fraught with tremendous synthesis challenges. To solve the synthesis problem, a tetrapodontic pyridine ligand L1 with two types of olefinic bond units and two Cp*M‐based building blocks (E1, M=Rh; E2, M=Ir) featuring large conjugated planes was prepared to perform the self‐assembly. Two unprecedented [5+10] icosanuclear molecular 4‐ravels containing four crossings were obtained by parallel‐displaced π⋅⋅⋅π interactions in a single‐step strategy. Remarkably, reversible structural transformations between the 4‐ravel and the corresponding metallocage could be realized by concentration changes and solvent‐ and guest‐induced effects. X‐ray crystallographic data and NMR spectroscopy provide full confirmation of these phenomena.
Two unprecedented [5+10] icosanuclear molecular 4‐ravels containing four crossings have been generated using a single‐step strategy. This topology is achieved by utilizing parallel‐displaced π⋅⋅⋅π interactions with carefully selected naphthoquinoyl Cp*M building blocks and X‐shaped pyridyl ligands. |
|---|---|
| Bibliography: | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1433-7851 1521-3773 1521-3773 |
| DOI: | 10.1002/anie.202301516 |