Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns

In this paper, we generalize the idea of star‐shaped set inversion fractals using iterations known from fixed point theory. We also extend the iterations from real parameters to so‐called q‐system numbers and proposed the use of switching processes. All the proposed generalizations allowed us to obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 36; H. 1; S. 35 - 45
1. Verfasser: Gdawiec, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.01.2017
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we generalize the idea of star‐shaped set inversion fractals using iterations known from fixed point theory. We also extend the iterations from real parameters to so‐called q‐system numbers and proposed the use of switching processes. All the proposed generalizations allowed us to obtain new and diverse fractal patterns that can be used, e.g. as textile and ceramics patterns. Moreover, we show that in the chaos game for iterated function systems—which is similar to the inversion fractals generation algorithm—the proposed generalizations do not give interesting results. In this paper, we generalize the idea of star‐shaped set inversion fractals using iterations known from fixed point theory. We also extend the iterations from real parameters to so‐called q‐system numbers and proposed the use of switching processes. All the proposed generalizations allowed us to obtain new and diverse fractal patterns that can be used, e.g. as textile and ceramics patterns. Moreover, we show that in the chaos game for iterated function systems—which is similar to the inversion fractals generation algorithm—the proposed generalizations do not give interesting results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12783