Context-Aware Learning for Generative Models
This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters th...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 32; no. 8; pp. 3471 - 3483 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information. |
|---|---|
| AbstractList | This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information. This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information.This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information. |
| Author | Leeb, Robert Millan, Jose del R. Chavarriaga, Ricardo Perdikis, Serafeim |
| Author_xml | – sequence: 1 givenname: Serafeim orcidid: 0000-0003-2033-2486 surname: Perdikis fullname: Perdikis, Serafeim email: serafeim.perdikis@essex.ac.uk organization: Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland – sequence: 2 givenname: Robert surname: Leeb fullname: Leeb, Robert organization: Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland – sequence: 3 givenname: Ricardo orcidid: 0000-0002-8879-2860 surname: Chavarriaga fullname: Chavarriaga, Ricardo organization: Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland – sequence: 4 givenname: Jose del R. orcidid: 0000-0001-5819-1522 surname: Millan fullname: Millan, Jose del R. organization: Center for Neuroprosthetics, Chair in Brain-Machine Interface, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland |
| BookMark | eNp9kMtOAjEUhhujEUReQDckblw42Mv0tiRE0WTEhZi4a8rMqRkydLAdvLy9gxAWLOzmdPF_5_KdoWNfe0DoguAhIVjfzqbT7GVIMcVDhgkRkhyhLiWCJpQpdbz_y7cO6se4wO0TmItUn6IOo1IKpWgX3Yxr38B3k4y-bIBBBjb40r8PXB0GE_AQbFN-wuCpLqCK5-jE2SpCf1d76PX-bjZ-SLLnyeN4lCU5k7RJnCuAEg2cWKG4zLFQWkoLWBVzSlMi81QyTdw8d04LwnJZaG6pEyoFUUjNeuh623cV6o81xMYsy5hDVVkP9ToamjKqRHvfJnp1EF3U6-Db7QzlXGqpeEraFN2m8lDHGMCZVSiXNvwYgs1Gp_nTaTY6zU5nC6kDKC-bVkcrLNiy-h-93KIlAOxnaSIY4Zz9Am90gG0 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1038_s42003_021_02938_w crossref_primary_10_1093_pnasnexus_pgae076 crossref_primary_10_1109_TNSRE_2024_3456591 crossref_primary_10_1080_2326263X_2021_2009654 |
| Cites_doi | 10.1016/0024-3795(94)90363-8 10.1109/TNN.1998.712192 10.1145/1390334.1390436 10.1007/978-3-642-23808-6_36 10.1145/279943.279962 10.1145/1553374.1553457 10.1016/j.patcog.2009.03.027 10.1007/978-1-4471-0211-3 10.1109/CVPR.2013.52 10.1111/j.2517-6161.1977.tb01600.x 10.1109/ACCESS.2020.2977671 10.1137/1.9781611972818.52 10.1016/j.patcog.2008.07.014 10.1145/354756.354805 10.1109/IJCNN.2009.5178922 10.1109/TPAMI.2012.139 10.1089/cmb.2010.0034 10.3115/v1/P14-1031 10.1088/1741-2560/13/3/036018 10.1016/S0024-3795(99)00013-0 10.1109/ICCV.2019.00654 10.1088/1741-2560/11/3/036003 10.1145/1273496.1273571 10.7551/mitpress/9780262033589.001.0001 10.1109/ICDM.2011.84 10.1111/j.0006-341X.2004.00156.x 10.1007/11551188_45 10.18653/v1/P16-1228 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2020.3011671 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Libary (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 3483 |
| ExternalDocumentID | 10_1109_TNNLS_2020_3011671 9163155 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European ICT Programme grantid: FP7-224631 funderid: 10.13039/100011273 – fundername: Tools for Brain-Computer Interaction (TOBI) – fundername: Hasler Foundation, Switzerland funderid: 10.13039/501100003475 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c372t-ffde219e51a6857c068977ae08db22417c47391fbcff9613c7d95a2f684e6d793 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681169500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Nov 09 14:19:26 EST 2025 Mon Jun 30 04:07:48 EDT 2025 Sat Nov 29 01:40:07 EST 2025 Tue Nov 18 22:13:15 EST 2025 Wed Aug 27 02:39:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-ffde219e51a6857c068977ae08db22417c47391fbcff9613c7d95a2f684e6d793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5819-1522 0000-0002-8879-2860 0000-0003-2033-2486 |
| OpenAccessLink | http://infoscience.epfl.ch/record/288122 |
| PMID | 32776882 |
| PQID | 2557978541 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2557978541 crossref_primary_10_1109_TNNLS_2020_3011671 crossref_citationtrail_10_1109_TNNLS_2020_3011671 ieee_primary_9163155 proquest_miscellaneous_2432861629 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 cour (ref8) 2011; 12 ref53 dempster (ref45) 1977; 39 ref11 ref54 mclachlan (ref46) 2008 zhu (ref36) 2014; 15 ref17 kingma (ref4) 2014 shental (ref28) 2004 ref16 mccallum (ref38) 1999 basu (ref27) 2002 urner (ref24) 2012; 22 bishop (ref3) 2006 ref51 ref50 kingma (ref52) 2014 ambroise (ref14) 2000 lehmann (ref44) 1998 joulin (ref19) 2012 ref48 ref47 ref42 ref41 karaletsos (ref43) 2015 ref9 ref40 orchard (ref7) 1972; 1 muslea (ref15) 2002 ref35 ref37 ref31 ref30 chang (ref29) 2007 ref32 bryan (ref34) 2013; 28 ref2 vahdat (ref49) 2018 ref1 kindermans (ref39) 2012 luo (ref18) 2010 ganchev (ref6) 2010; 11 ref23 ref26 ref25 ref20 mann (ref5) 2010; 11 ref22 bellare (ref33) 2009 ref21 liu (ref13) 2012 sun (ref10) 2010 |
| References_xml | – ident: ref48 doi: 10.1016/0024-3795(94)90363-8 – start-page: 43 year: 2009 ident: ref33 article-title: Alternating projections for learning with expectation constraints publication-title: Proc 25th Conf Uncertainty Artif Intell (UAI) – volume: 11 start-page: 2001 year: 2010 ident: ref6 article-title: Posterior regularization for structured latent variable models publication-title: J Mach Learn Res – volume: 22 start-page: 1252 year: 2012 ident: ref24 article-title: Learning from weak teachers publication-title: J Mach Learn Res Proc Track – year: 1998 ident: ref44 article-title: Theory point estimation publication-title: Springer Texts in Statistics – ident: ref2 doi: 10.1109/TNN.1998.712192 – start-page: 1864 year: 2018 ident: ref49 article-title: Dvae#: Discrete variational autoencoders with relaxed Boltzmann priors publication-title: Proc Adv Neural Inf Process Syst – start-page: 9 year: 2012 ident: ref39 article-title: A P300 BCI for the masses: Prior information enables instant unsupervised spelling publication-title: Proc Adv Neural Inf Process Syst – ident: ref32 doi: 10.1145/1390334.1390436 – ident: ref11 doi: 10.1007/978-3-642-23808-6_36 – ident: ref25 doi: 10.1145/279943.279962 – year: 2015 ident: ref43 article-title: Bayesian representation learning with oracle constraints publication-title: arXiv 1506 05011 – ident: ref30 doi: 10.1145/1553374.1553457 – volume: 28 start-page: 208 year: 2013 ident: ref34 article-title: An efficient posterior regularized latent variable model for interactive sound source separation publication-title: Proc 30th Int Conf Mach Learn (ICML) – start-page: 3581 year: 2014 ident: ref52 article-title: Semi-supervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst – start-page: 465 year: 2004 ident: ref28 article-title: Computing Gaussian mixture models with EM using equivalence constraints publication-title: Proc Adv Neural Inf Process Syst – ident: ref21 doi: 10.1016/j.patcog.2009.03.027 – ident: ref41 doi: 10.1007/978-1-4471-0211-3 – volume: 15 start-page: 1799 year: 2014 ident: ref36 article-title: Bayesian inference with posterior regularization and applications to infinite latent SVMs publication-title: J Mach Learn Res – ident: ref9 doi: 10.1109/CVPR.2013.52 – start-page: 593 year: 2010 ident: ref10 article-title: Multi-label learning with weak label publication-title: Proc 24th AAAI Conf Artif Intell – volume: 39 start-page: 1 year: 1977 ident: ref45 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc B Statist Methodol doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref51 doi: 10.1109/ACCESS.2020.2977671 – ident: ref17 doi: 10.1137/1.9781611972818.52 – start-page: 1279 year: 2012 ident: ref19 article-title: A convex relaxation for weakly supervised classifiers publication-title: Proc 29th Int Conf Mach Learn (ICML) – year: 2006 ident: ref3 publication-title: Pattern Recognition and Machine Learning – ident: ref40 doi: 10.1016/j.patcog.2008.07.014 – start-page: 27 year: 2002 ident: ref27 article-title: Semi-supervised clustering by seeding publication-title: Proc 19th Int'l Conf Machine Learning (ICML) – ident: ref26 doi: 10.1145/354756.354805 – ident: ref37 doi: 10.1109/IJCNN.2009.5178922 – volume: 11 start-page: 955 year: 2010 ident: ref5 article-title: Generalized expectation criteria for semi-supervised learning with weakly labeled data publication-title: J Mach Learn Res – year: 2008 ident: ref46 article-title: The EM algorithm extensions publication-title: Wiley Series in Probability and Statistics – ident: ref12 doi: 10.1109/TPAMI.2012.139 – volume: 12 start-page: 1501 year: 2011 ident: ref8 article-title: Learning from partial labels publication-title: J Mach Learn Res – ident: ref22 doi: 10.1089/cmb.2010.0034 – ident: ref35 doi: 10.3115/v1/P14-1031 – start-page: 280 year: 2007 ident: ref29 article-title: Guiding semi-supervision with constraint-driven learning publication-title: Proc Assoc Comp Ling (ACL) – ident: ref54 doi: 10.1088/1741-2560/13/3/036018 – start-page: 435 year: 2002 ident: ref15 article-title: Active + semi-supervised learning = robust multi-view learning publication-title: Proc 19th Int Conf Mach Learn ICML – ident: ref47 doi: 10.1016/S0024-3795(99)00013-0 – start-page: 225 year: 2012 ident: ref13 article-title: TrueLabel + Confusions: A spectrum of probabilistic models in analyzing multiple ratings publication-title: Proc 29th Int Conf Mach Learn (ICML) – start-page: 1504 year: 2010 ident: ref18 article-title: Learning from candidate labeling sets publication-title: Proc Adv Neural Inf Process Syst – ident: ref50 doi: 10.1109/ICCV.2019.00654 – ident: ref53 doi: 10.1088/1741-2560/11/3/036003 – ident: ref31 doi: 10.1145/1273496.1273571 – start-page: 52 year: 1999 ident: ref38 article-title: Text classification by bootstrapping with keywords, EM and shrinkage publication-title: Proc Workshop Unsupervised Learn Natural Lang Process – ident: ref1 doi: 10.7551/mitpress/9780262033589.001.0001 – volume: 1 start-page: 697 year: 1972 ident: ref7 article-title: A missing information principle: Theory and applications publication-title: Proc 6th Berkeley Symp Math Stat Prob – ident: ref20 doi: 10.1109/ICDM.2011.84 – ident: ref23 doi: 10.1111/j.0006-341X.2004.00156.x – ident: ref16 doi: 10.1007/11551188_45 – year: 2014 ident: ref4 article-title: Auto-encoding variational Bayes publication-title: arXiv 1312 6114 – start-page: 161 year: 2000 ident: ref14 publication-title: EM Algorithm for Partially Known Labels – ident: ref42 doi: 10.18653/v1/P16-1228 |
| SSID | ssj0000605649 |
| Score | 2.3975866 |
| Snippet | This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3471 |
| SubjectTerms | Algorithms Approximation algorithms Artificial neural networks Bayesian analysis Brain-computer interfaces Classification Context Context awareness Context modeling Deep learning expectation–maximization (EM) Extremities finite mixture models (FMMs) Learning systems Machine learning Mathematical models maximum likelihood (ML) Maximum likelihood estimation Neural networks Parameter estimation Probabilistic logic Probabilistic models side information unsupervised learning variational autoencoder (VA) |
| Title | Context-Aware Learning for Generative Models |
| URI | https://ieeexplore.ieee.org/document/9163155 https://www.proquest.com/docview/2557978541 https://www.proquest.com/docview/2432861629 |
| Volume | 32 |
| WOSCitedRecordID | wos000681169500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Libary (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MXp05xOkcFb66uTdt8HIc4PIwiOKW3kqaJCGOTfei_70vWFUQRvBWahPL6vn55yfsBXFsCJBEq6nN0_35saOIXidI-JnNJSUQQEUfJ8jJhacqzTDw2YFDfhdFau8Nn-tY-ulp-uVAbu1U2xFQmwvjXhCZjdHtXq95PCTAvpy7bJSElPolYtrsjE4jhNE0nT4gGCYJUV3qwDDERwWU4J99CkuNY-eGYXbQZt__3nYdwUGWV3mirBkfQ0PNjaO8YG7zKgDswcM2oEOuOPuVSe1Vz1VcPM1dv24Daej_PEqTNVifwPL6f3j34FV-CryJG1r4xpUYHpJNQUp4wFVCO2Z3UAS8LG6mZilkkQlMoYwSGccVKkUhiKI81LdFQT6E1X8z1GXgFDaQ0RSyIREiTEGmhCysCakwRch51IdyJLFdVM3HLaTHLHagIRO4knluJ55XEu3BTz3nfttL4c3THCrYeWcm0C73dn8kra1vlCIsYouEkxllX9Wu0E1v8kHO92OCYOCKcomqI899XvoB9Ys-ruMN9PWitlxt9CXvqY_22WvZR5TLedyr3BW-xzNc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB68QF-8xfWs4JtW07S5HkUUxbUIrrJvJU0TEWRX9tC_7yTbLYgi-FZoUsokM_N9OeYDOPYCSCoxPJYY_uPMcRaXzNgYwRyrqCIpDZIsz22R57LbVQ8zcNrchbHWhsNn9sw_hr38qm_GfqnsHKFMivlvFuZZllEyua3VrKgQROY84F2acBrTVHSnt2SIOu_kefsR-SBFmho2H7xGTEoFwm1JvyWloLLyIzSHfHO98r8_XYXlGldGF5OJsAYztrcOK1PNhqh24Q04DeWokO1efOqBjeryqi8RYtdoUoLax7_IS6S9DTfh6fqqc3kT14oJsUkFHcXOVRZDkGWJ5pIJQ7hEfKctkVXpc7UwmUhV4krjnMJEbkSlmKaOy8zyCl11C-Z6_Z7dhqjkRGtXZopqJDWMak9eREm4c2UiZdqCZGqywtTlxL2qxVsRaAVRRbB44S1e1BZvwUnT531STOPP1hvesE3L2qYt2JuOTFH727BAYiSQD7MMex01r9FT_PaH7tn-GNtkKZUcp4ba-f3Lh7B407lvF-3b_G4Xlqg_vRKO-u3B3GgwtvuwYD5Gr8PBQZh4X2-TzzY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-Aware+Learning+for+Generative+Models&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Perdikis%2C+Serafeim&rft.au=Leeb%2C+Robert&rft.au=Chavarriaga%2C+Ricardo&rft.au=Millan%2C+Jose+del+R.&rft.date=2021-08-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=8&rft.spage=3471&rft.epage=3483&rft_id=info:doi/10.1109%2FTNNLS.2020.3011671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3011671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |