Context-Aware Learning for Generative Models

This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 32; číslo 8; s. 3471 - 3483
Hlavní autoři: Perdikis, Serafeim, Leeb, Robert, Chavarriaga, Ricardo, Millan, Jose del R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3011671