Sequential trans-dimensional Monte Carlo for range-dependent geoacoustic inversion

This paper develops a sequential trans-dimensional Monte Carlo algorithm for geoacoustic inversion in a strongly range-dependent environment. The algorithm applies advanced Markov chain Monte Carlo methods in combination with sequential techniques (particle filters) to carry out geoacoustic inversio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of the Acoustical Society of America Ročník 129; číslo 4; s. 1794
Hlavní autori: Dettmer, Jan, Dosso, Stan E, Holland, Charles W
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.04.2011
Predmet:
ISSN:1520-8524, 1520-8524
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper develops a sequential trans-dimensional Monte Carlo algorithm for geoacoustic inversion in a strongly range-dependent environment. The algorithm applies advanced Markov chain Monte Carlo methods in combination with sequential techniques (particle filters) to carry out geoacoustic inversions for consecutive data sets acquired along a track. Changes in model parametrization along the track (e.g., number of sediment layers) are accounted for with trans-dimensional partition modeling, which intrinsically determines the amount of structure supported by the data information content. Challenging issues of rapid environmental change between consecutive data sets and high information content (peaked likelihood) are addressed by bridging distributions implemented using annealed importance sampling. This provides an efficient method to locate high-likelihood regions for new data which are distant and ∕ or disjoint from previous high-likelihood regions. The algorithm is applied to simulated reflection-coefficient data along a track, such as can be collected using a towed array close to the seabed. The simulated environment varies rapidly along the track, with changes in the number of layers, layer thicknesses, and geoacoustic parameters within layers. In addition, the seabed contains a geologic fault, where all layers are offset abruptly, and an erosional channel. Changes in noise level are also considered.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-8524
1520-8524
DOI:10.1121/1.3557052