The ecology of the plastisphere: Microbial composition, function, assembly, and network in the freshwater and seawater ecosystems
•Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were explored.•The plastisphere could cause different ecological impacts in different ecosystems.•Niche-based processes govern the assembly of the plastisp...
Gespeichert in:
| Veröffentlicht in: | Water research (Oxford) Jg. 202; S. 117428 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2021
|
| Schlagworte: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were explored.•The plastisphere could cause different ecological impacts in different ecosystems.•Niche-based processes govern the assembly of the plastisphere microbial community.•The plastisphere plays a diverse role in microbial networks in different ecosystems.
Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3−, NO2−, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem—plastisphere—is unique and exerts different effects in freshwater and seawater ecosystems.
[Display omitted] |
|---|---|
| AbstractList | Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO₃⁻, NO₂⁻, and NH₄⁺), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem—plastisphere—is unique and exerts different effects in freshwater and seawater ecosystems. Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3-, NO2-, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem-plastisphere-is unique and exerts different effects in freshwater and seawater ecosystems.Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3-, NO2-, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem-plastisphere-is unique and exerts different effects in freshwater and seawater ecosystems. •Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were explored.•The plastisphere could cause different ecological impacts in different ecosystems.•Niche-based processes govern the assembly of the plastisphere microbial community.•The plastisphere plays a diverse role in microbial networks in different ecosystems. Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3−, NO2−, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem—plastisphere—is unique and exerts different effects in freshwater and seawater ecosystems. [Display omitted] |
| ArticleNumber | 117428 |
| Author | Gan, Yandong Wang, Longfei Liu, Jian Li, Changchao Ji, Shuping Chang, Mengjie Wang, Lifei |
| Author_xml | – sequence: 1 givenname: Changchao surname: Li fullname: Li, Changchao organization: Environment Research Institute, Shandong University, Qingdao 266237, China – sequence: 2 givenname: Lifei surname: Wang fullname: Wang, Lifei organization: Environment Research Institute, Shandong University, Qingdao 266237, China – sequence: 3 givenname: Shuping surname: Ji fullname: Ji, Shuping organization: Environment Research Institute, Shandong University, Qingdao 266237, China – sequence: 4 givenname: Mengjie surname: Chang fullname: Chang, Mengjie organization: Environment Research Institute, Shandong University, Qingdao 266237, China – sequence: 5 givenname: Longfei surname: Wang fullname: Wang, Longfei organization: College of Environment, Hohai University, Nanjing 210098, China – sequence: 6 givenname: Yandong surname: Gan fullname: Gan, Yandong organization: School of Life Sciences, Qufu Normal University, Qufu 273165, China – sequence: 7 givenname: Jian orcidid: 0000-0003-1920-2641 surname: Liu fullname: Liu, Jian email: ecology@sdu.edu.cn organization: Environment Research Institute, Shandong University, Qingdao 266237, China |
| BookMark | eNqFUU1v1DAQtVArsW35Bxxy5EAW24njpAckVPElFfXSnq2JM2G9JHbweKn2yD_H23DiQE8z43nvefTeBTvzwSNjrwXfCi6ad_vtI6SItJVciq0QupbtC7YRre5KWdftGdtwXlelqFT9kl0Q7TnnUlbdhv2-32GBNkzh-7EIY5HyuExAydGyw4jXxTdnY-gdTIUN8xLIJRf822I8eLt2QIRzPx1z54fCY3oM8Ufh_JPWmM_a5eswPm0JYR3yl3SkhDNdsfMRJsJXf-sle_j08f7mS3l79_nrzYfb0lZapnJQna0UWKUVCI3VOErRSz1qiwJkLTVAa0G1HbcSuvzao1C6HSxwVfcdVJfszaq7xPDzgJTM7MjiNIHHcCAjm6pRQnWSPw9VSgneNM0Jer1Cs0lEEUdjXYKTMSmCm4zg5hSR2Zs1InOKyKwRZXL9D3mJboZ4fI72fqVhtuuXw2jIOvQWBxfRJjME93-BPyiFsi4 |
| CitedBy_id | crossref_primary_10_1016_j_jhazmat_2024_135192 crossref_primary_10_1016_j_molliq_2023_123637 crossref_primary_10_1016_j_scitotenv_2024_176576 crossref_primary_10_1016_j_jhazmat_2025_139391 crossref_primary_10_1080_10643389_2025_2560435 crossref_primary_10_1016_j_scitotenv_2023_163665 crossref_primary_10_1016_j_envint_2024_108809 crossref_primary_10_1016_j_jhazmat_2024_134783 crossref_primary_10_1016_j_scitotenv_2022_156179 crossref_primary_10_1016_j_watres_2023_120574 crossref_primary_10_1093_ismeco_ycae056 crossref_primary_10_3389_fmicb_2023_1290441 crossref_primary_10_1016_j_jhazmat_2025_138078 crossref_primary_10_1016_j_jece_2023_110447 crossref_primary_10_1016_j_jhazmat_2024_135867 crossref_primary_10_1016_j_jhazmat_2024_135620 crossref_primary_10_3389_fmicb_2022_888343 crossref_primary_10_1016_j_scitotenv_2022_156068 crossref_primary_10_1016_j_jhazmat_2025_138755 crossref_primary_10_1016_j_apsoil_2025_106294 crossref_primary_10_1038_s43705_023_00275_z crossref_primary_10_1016_j_jhazmat_2023_131208 crossref_primary_10_1016_j_marpolbul_2023_115402 crossref_primary_10_1016_j_scitotenv_2024_175226 crossref_primary_10_1016_j_jhazmat_2025_138641 crossref_primary_10_1016_j_jhazmat_2023_133152 crossref_primary_10_1016_j_oneear_2025_101446 crossref_primary_10_1016_j_cbpc_2025_110333 crossref_primary_10_1016_j_enceco_2024_10_010 crossref_primary_10_1016_j_trac_2024_117996 crossref_primary_10_1021_acs_est_5c06538 crossref_primary_10_1016_j_fuel_2022_126917 crossref_primary_10_3390_microorganisms12122547 crossref_primary_10_1016_j_jhazmat_2022_129737 crossref_primary_10_1016_j_envres_2025_121676 crossref_primary_10_1016_j_envpol_2024_124603 crossref_primary_10_1016_j_scitotenv_2023_165807 crossref_primary_10_1016_j_catena_2024_108634 crossref_primary_10_1016_j_jhazmat_2023_133166 crossref_primary_10_1016_j_jhazmat_2024_135763 crossref_primary_10_1016_j_jwpe_2023_103669 crossref_primary_10_1016_j_jhazmat_2025_139868 crossref_primary_10_1016_j_jhazmat_2022_130714 crossref_primary_10_1016_j_apsoil_2024_105287 crossref_primary_10_1016_j_jece_2025_117700 crossref_primary_10_1016_j_envint_2025_109309 crossref_primary_10_1016_j_ecolind_2024_112452 crossref_primary_10_1016_j_jhazmat_2022_129700 crossref_primary_10_1007_s11368_024_03845_3 crossref_primary_10_1016_j_cell_2024_12_036 crossref_primary_10_1016_j_envres_2024_118156 crossref_primary_10_1016_j_geoderma_2022_116311 crossref_primary_10_1016_j_soilbio_2024_109425 crossref_primary_10_1016_j_psep_2025_107117 crossref_primary_10_3389_fmicb_2022_1056147 crossref_primary_10_1016_j_envpol_2022_119385 crossref_primary_10_3390_su16052163 crossref_primary_10_1016_j_scitotenv_2022_153488 crossref_primary_10_1016_j_cej_2023_147756 crossref_primary_10_1016_j_jenvman_2023_118710 crossref_primary_10_1016_j_jhazmat_2023_131080 crossref_primary_10_1016_j_watres_2024_121849 crossref_primary_10_1021_acs_est_5c06662 crossref_primary_10_3390_ijerph20021150 crossref_primary_10_1007_s43546_025_00845_4 crossref_primary_10_1007_s00248_023_02305_8 crossref_primary_10_1007_s00343_022_2189_8 crossref_primary_10_1016_j_envres_2025_121053 crossref_primary_10_1016_j_jhazmat_2022_130011 crossref_primary_10_1016_j_decarb_2023_100006 crossref_primary_10_1016_j_jhydrol_2025_133980 crossref_primary_10_1016_j_scitotenv_2022_159775 crossref_primary_10_1016_j_seh_2023_100002 crossref_primary_10_1016_j_watres_2022_119406 crossref_primary_10_3390_agronomy13020481 crossref_primary_10_1016_j_watres_2023_119704 crossref_primary_10_1016_j_cej_2025_164640 crossref_primary_10_1016_j_jhazmat_2025_139012 crossref_primary_10_1016_j_watres_2025_123417 crossref_primary_10_1038_s41467_022_31584_x crossref_primary_10_1016_j_envpol_2024_124197 crossref_primary_10_1016_j_scitotenv_2023_168696 crossref_primary_10_1039_D2EN01018F crossref_primary_10_3389_fmicb_2021_660024 crossref_primary_10_1016_j_gecco_2024_e03171 crossref_primary_10_1016_j_scitotenv_2022_158330 crossref_primary_10_1038_s41598_025_87983_9 crossref_primary_10_1016_j_jhazmat_2024_135974 crossref_primary_10_1016_j_jhazmat_2025_139932 crossref_primary_10_1016_j_ecoenv_2025_119003 crossref_primary_10_1016_j_watres_2023_120581 crossref_primary_10_1016_j_chemosphere_2022_134990 crossref_primary_10_1007_s11356_024_35658_9 crossref_primary_10_1016_j_jece_2025_115551 crossref_primary_10_1016_j_envpol_2023_123136 crossref_primary_10_1016_j_envpol_2023_121873 crossref_primary_10_1002_imt2_101 crossref_primary_10_1016_j_envpol_2023_121196 crossref_primary_10_1016_j_scitotenv_2023_163308 crossref_primary_10_3389_fmicb_2021_785737 crossref_primary_10_1016_j_scitotenv_2023_164523 crossref_primary_10_1016_j_jhazmat_2025_137889 crossref_primary_10_1016_j_scitotenv_2023_167478 crossref_primary_10_1016_j_scitotenv_2022_157016 crossref_primary_10_1134_S0026261722020126 crossref_primary_10_1007_s10653_025_02607_5 crossref_primary_10_1016_j_envres_2024_120362 crossref_primary_10_1016_j_envres_2025_121072 crossref_primary_10_1016_j_jhazmat_2023_131989 crossref_primary_10_1016_j_watres_2023_120590 crossref_primary_10_1007_s11104_022_05445_x crossref_primary_10_1016_j_jclepro_2023_136066 crossref_primary_10_1016_j_chemosphere_2024_143842 crossref_primary_10_1016_j_watres_2023_121013 crossref_primary_10_1016_j_watres_2024_122506 crossref_primary_10_1016_j_cej_2024_152484 crossref_primary_10_1016_j_scitotenv_2022_157781 crossref_primary_10_1016_j_jhazmat_2023_131399 crossref_primary_10_1016_j_watres_2022_118920 crossref_primary_10_1016_j_jhazmat_2023_132921 crossref_primary_10_1007_s10682_025_10358_z crossref_primary_10_1016_j_jhazmat_2023_130868 crossref_primary_10_1016_j_chemosphere_2024_143718 crossref_primary_10_1080_12298093_2022_2152951 crossref_primary_10_1016_j_chemosphere_2022_134451 crossref_primary_10_3390_w16182637 crossref_primary_10_3389_fmicb_2022_851450 crossref_primary_10_1016_j_jenvman_2023_118756 crossref_primary_10_1016_j_rhisph_2025_101091 crossref_primary_10_1128_msystems_00014_23 crossref_primary_10_3390_foods12193712 crossref_primary_10_1016_j_envpol_2022_120185 crossref_primary_10_1016_j_compbiolchem_2025_108444 crossref_primary_10_3389_fmicb_2024_1395401 crossref_primary_10_1016_j_jhazmat_2024_136555 crossref_primary_10_1016_j_envpol_2025_127074 crossref_primary_10_1016_j_biortech_2024_131750 crossref_primary_10_1016_j_scitotenv_2024_172933 crossref_primary_10_3389_fmicb_2025_1531875 crossref_primary_10_3389_fevo_2023_1279589 crossref_primary_10_1016_j_ecolind_2022_108695 crossref_primary_10_1016_j_watres_2023_120946 crossref_primary_10_1016_j_jenvman_2025_125755 crossref_primary_10_1007_s11104_022_05528_9 crossref_primary_10_1016_j_cej_2023_141969 crossref_primary_10_1021_envhealth_4c00148 crossref_primary_10_3389_fmicb_2023_1219655 crossref_primary_10_1016_j_watres_2024_123057 crossref_primary_10_3390_microorganisms13081726 crossref_primary_10_1080_27658511_2025_2516898 crossref_primary_10_1111_1462_2920_16400 crossref_primary_10_1016_j_biortech_2024_131643 crossref_primary_10_1016_j_envpol_2025_125796 crossref_primary_10_1111_1462_2920_16536 crossref_primary_10_1016_j_ecoenv_2024_116541 crossref_primary_10_1016_j_enceco_2025_08_006 crossref_primary_10_1016_j_scitotenv_2024_171952 crossref_primary_10_1016_j_jenvman_2025_126856 crossref_primary_10_1016_j_jhazmat_2024_135241 crossref_primary_10_1021_acs_est_4c09766 crossref_primary_10_1016_j_envpol_2022_120955 crossref_primary_10_1016_j_scitotenv_2025_179968 crossref_primary_10_1016_j_scitotenv_2022_157459 crossref_primary_10_1016_j_scitotenv_2024_173209 crossref_primary_10_1007_s00449_024_03059_4 crossref_primary_10_1016_j_jhazmat_2021_127646 crossref_primary_10_1111_1758_2229_13286 crossref_primary_10_1007_s44169_024_00063_3 crossref_primary_10_1038_s41598_024_63859_2 crossref_primary_10_1016_j_envint_2025_109708 crossref_primary_10_1016_j_watres_2022_119018 crossref_primary_10_3390_ijerph20105868 crossref_primary_10_1016_j_jwpe_2025_107582 crossref_primary_10_3390_agriculture15070778 crossref_primary_10_1016_j_jhazmat_2024_134343 crossref_primary_10_1016_j_scitotenv_2022_161322 crossref_primary_10_1016_j_ecoenv_2025_118332 crossref_primary_10_1016_j_jhazmat_2024_136409 crossref_primary_10_1016_j_envpol_2025_127153 crossref_primary_10_1016_j_jclepro_2024_142097 crossref_primary_10_1016_j_scitotenv_2024_174001 crossref_primary_10_1016_j_envpol_2024_124465 crossref_primary_10_1016_j_jhazmat_2023_132693 crossref_primary_10_1016_j_ecoenv_2022_113213 crossref_primary_10_1016_j_jhazmat_2022_130535 crossref_primary_10_1016_j_pedsph_2023_07_007 crossref_primary_10_1371_journal_pone_0312157 crossref_primary_10_1016_j_apsoil_2024_105783 crossref_primary_10_1016_j_cej_2022_140193 crossref_primary_10_1016_j_scitotenv_2024_170653 crossref_primary_10_3389_fmicb_2024_1416256 crossref_primary_10_1016_j_jhazmat_2025_139532 crossref_primary_10_1016_j_envpol_2025_126977 crossref_primary_10_1016_j_ecolind_2024_112274 crossref_primary_10_1016_j_jhazmat_2024_136660 crossref_primary_10_1016_j_scitotenv_2024_170094 crossref_primary_10_1038_s43247_023_01127_3 crossref_primary_10_1002_imt2_79 crossref_primary_10_1016_j_jhazmat_2025_137910 crossref_primary_10_1016_j_jhazmat_2023_131699 crossref_primary_10_1007_s11356_024_34214_9 crossref_primary_10_3389_fmicb_2025_1530553 crossref_primary_10_1016_j_jenvman_2024_121107 crossref_primary_10_1016_j_jhazmat_2024_137061 crossref_primary_10_1016_j_watres_2024_121105 crossref_primary_10_1016_j_watres_2023_120875 crossref_primary_10_1080_10852352_2025_2474909 crossref_primary_10_1016_j_envint_2024_108901 crossref_primary_10_1016_j_envres_2024_119410 crossref_primary_10_1021_acs_est_5c06285 crossref_primary_10_1038_s42004_023_00998_z crossref_primary_10_11626_KJEB_2025_43_1_010 crossref_primary_10_3389_fpls_2022_1011001 crossref_primary_10_3390_microorganisms11112797 crossref_primary_10_1007_s00248_022_01960_7 crossref_primary_10_1007_s40726_023_00262_x crossref_primary_10_1016_j_biortech_2024_131971 crossref_primary_10_3389_fsufs_2025_1634747 crossref_primary_10_3390_w17101421 |
| Cites_doi | 10.1016/j.envpol.2018.10.110 10.1016/j.envpol.2020.115756 10.1016/j.scitotenv.2020.141434 10.1038/s41467-020-20271-4 10.1016/j.marpolbul.2017.06.039 10.1038/s41467-018-03825-5 10.1021/es401288x 10.1016/j.tim.2020.06.011 10.1038/nrmicro3417 10.1073/pnas.0706375104 10.1186/s41610-020-00161-y 10.1111/j.1462-2920.2005.00956.x 10.1021/acs.est.0c02305 10.1016/j.scitotenv.2020.138682 10.1038/s41467-020-17201-9 10.1038/s41396-020-00814-9 10.1016/j.scitotenv.2020.140218 10.1890/11-1144.1 10.1016/j.envint.2020.106274 10.1016/j.jhazmat.2019.121846 10.1021/acs.est.9b01339 10.1126/science.abb5979 10.1128/AEM.00062-07 10.1038/ismej.2017.183 10.1126/sciadv.1700782 10.1007/698_2016_12 10.1021/acs.est.0c07952 10.1016/j.watres.2020.116574 10.1126/science.abc3134 10.1111/jfpp.13384 10.1016/j.chemosphere.2020.126740 10.1016/j.soilbio.2019.107696 10.1126/science.aaf4507 10.1016/j.jhazmat.2020.122994 10.1016/j.watres.2021.116852 10.1007/s13131-014-0528-0 10.1016/j.watres.2020.116021 10.1038/s41467-020-16235-3 10.1021/acs.est.0c04292 10.1016/j.chemosphere.2019.124409 10.1038/s41579-018-0024-1 10.1111/mec.12481 10.1016/j.scitotenv.2018.12.480 10.1021/acs.est.9b05995 10.1016/j.chemosphere.2019.125491 10.1007/s11033-018-4303-8 10.1038/s41396-019-0522-9 10.1016/j.watres.2020.116776 10.1021/acs.est.6b04702 10.1038/nmeth.f.303 10.1111/mec.15825 10.1038/s41565-020-0707-4 10.1016/j.marpolbul.2021.112322 10.1016/j.watres.2017.05.053 10.1007/s11157-020-09529-x 10.1021/es0010498 10.7717/peerj.2584 10.1016/j.watres.2020.116113 10.1128/MMBR.00002-17 10.1038/s41893-020-0567-9 10.1126/science.1261359 10.1038/s41579-019-0308-0 10.1016/j.jhazmat.2017.10.014 10.1016/j.marpolbul.2018.05.068 10.1016/j.funeco.2015.06.006 10.1128/msystems.00783-19 10.1093/bioinformatics/btq461 10.1111/geb.13266 10.1016/j.earscirev.2020.103118 10.1016/j.marpolbul.2018.03.011 10.1016/j.envpol.2020.114641 10.1021/acs.est.0c00917 10.1128/msystems.00704-19 10.1086/284382 10.1021/acs.est.7b03331 10.1088/1748-9326/10/12/124006 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2021.117428 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 10_1016_j_watres_2021_117428 S0043135421006266 |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-d59c35ac575a17e3ff21b27f7ce1a2427aa8ca5890c2a97cebe1578dca054b9a3 |
| ISICitedReferencesCount | 245 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691522600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sat Sep 27 23:20:52 EDT 2025 Sun Sep 28 07:26:11 EDT 2025 Tue Nov 18 22:22:02 EST 2025 Sat Nov 29 07:25:33 EST 2025 Fri Feb 23 02:41:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Aquatic environment Microplastic Assembly process Microbial community Interaction network Plastisphere |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-d59c35ac575a17e3ff21b27f7ce1a2427aa8ca5890c2a97cebe1578dca054b9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1920-2641 |
| PQID | 2555106660 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636515920 proquest_miscellaneous_2555106660 crossref_citationtrail_10_1016_j_watres_2021_117428 crossref_primary_10_1016_j_watres_2021_117428 elsevier_sciencedirect_doi_10_1016_j_watres_2021_117428 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Water research (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Huang, Wang, Sun, Zhao, Huang (bib0061) 2020; 726 Wright, Erni-Cassola, Zadjelovic, Latva, Christie-Oleza (bib0068) 2020; 54 Banerjee, Schlaeppi, van der Heijden (bib0002) 2018; 16 Dąbrowska (bib0011) 2021; 167 Clark, Underwood, McGenity, Dumbrell (bib0010) 2021; 30 Ragusa, Svelato, Santacroce, Catalano, Notarstefano, Carnevali, Papa, Rongioletti, Baiocco, Draghi, D'Amore, Rinaldo, Matta, Giorgini (bib0045) 2021; 146 Hou, Hong, Wang, Yan, Wang, Dong, Li, Liu, Zhou, Zhang (bib0019) 2021; 268 Sun, Ren, Ni (bib0054) 2020; 742 PlasticsEurope, 2020. Plastics—the Facts 2020. Rognes, Flouri, Nichols, Quince, Mahé (bib0050) 2016; 4 Sunagawa, Coelho, Chaffron, Kultima, Labadie, Salazar, Djahanschiri, Zeller, Mende, Alberti, Cornejo-Castillo, Costea, Cruaud, D'Ovidio, Engelen, Ferrera, Gasol, Guidi, Hildebrand, Kokoszka, Lepoivre, Lima-Mendez, Poulain, Poulos, Royo-Llonch, Sarmento, Vieira-Silva, Dimier, Picheral, Searson, Kandels-Lewis, Bowler, de Vargas, Gorsky, Grimsley, Hingamp, Iudicone, Jaillon, Not, Ogata, Pesant, Speich, Stemmann, Sullivan, Weissenbach, Wincker, Karsenti, Raes, Acinas, Bork (bib0056) 2015; 348 Jacob, Besson, Swarzenski, Lecchini, Metian (bib0020) 2020; 54 Wang, Zou, Li, Yao, Zang, Li, Yu, Wang (bib0066) 2019; 245 Chen, Huang, Xie, Guo, Song, Li, Liu (bib0007) 2014; 33 Peeken, Primpke, Beyer, Gütermann, Katlein, Krumpen, Bergmann, Hehemann, Gerdts (bib0043) 2018; 9 Wang, Garrity, Tiedje, Cole (bib0064) 2007; 73 Birch, Potter, Pinto, Dionysiou, Al-Abed (bib0005) 2020; 19 Wang, Han, Li, Yu, Wang, Ginawi, Ning, Yan (bib0063) 2021; 30 Li, Li, Dumbrell, Liu, Li, Wu, Jiang, Li (bib0031) 2020; 5 Louca, Parfrey, Doebeli (bib0032) 2016; 353 Wang, Qin, Guo, Jia, Wang, Zhang, Huang (bib0062) 2020; 183 Bowley, Baker-Austin, Porter, Hartnell, Lewis (bib0006) 2021; 29 Mughini-Gras, van der Plaats, van der Wielen, Bauerlein, de Roda Husman (bib0038) 2021; 192 Munari, Infantini, Scoponi, Rastelli, Corinaldesi, Mistri (bib0039) 2017; 122 Chen, Tsui, Lam, Hu, Wang, Zhou, Lam (bib0008) 2019; 660 Edgar (bib78) 2010; 26 Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bib0035) 2001; 35 Gad, Hou, Li, Wu, Rashid, Chen, Hu (bib0016) 2020; 748 Kooi, van Nes, Scheffer, Koelmans (bib0027) 2017; 51 Wan, Gao, Zhao, Feng, van Nostrand, Yang, Zhou (bib0060) 2020; 142 Li, Gan, Zhang, He, Fang, Wang, Wang, Liu (bib0029) 2021; 188 Kanhai, Gårdfeldt, Lyashevska, Hassellöv, Thompson, O'Connor (bib0023) 2018; 130 . Li, Luo, Li, Zhou, Peijnenburg, Yin, Yang, Tu, Zhang (bib0030) 2020; 3 Van Sebille, Wilcox, Lebreton, Maximenko, Hardesty, van Franeker, Eriksen, Siegel, Galgani, Law (bib0059) 2015; 10 Zhou, Ning (bib0076) 2017; 81 Wang, Yu, Chu, Wang, Lan, Wang (bib0065) 2020; 244 Nguyen, Song, Bates, Branco, Tedersoo, Menke, Schilling, Kennedy (bib0040) 2016; 20 Wang, Li, Liu, Zhu, Song, Li (bib0067) 2020; 389 Amaral-Zettler, Zettler, Mincer (bib0001) 2020; 18 Zhang, Kang, Allen, Allen, Gao, Sillanpää (bib0075) 2020; 203 Cheung, Fok (bib0009) 2017; 122 Farjalla, Srivastava, Marino, Azevedo, Dib, Lopes, Rosado, Bozelli, Esteves (bib0014) 2012; 93 Ding, Zhu, Wang, Lassen, Chen, Li, Lv, Zhu (bib0012) 2020; 54 Wright, Langille, Walker (bib0069) 2021; 15 Zettler, Mincer, Amaral-Zettler (bib0073) 2013; 47 Miller (bib0036) 2020; 368 Trojánek, Kovařík, Španová, Marošiová, Horák, Rittich (bib0058) 2018; 42 Yang, Chen, Chen, Li, Liao, Pu, Zhu, Cui (bib0072) 2020; 54 Bergmann, Wirzberger, Krumpen, Lorenz, Primpke, Tekman, Gerdts (bib0003) 2017; 51 Machado, Lau, Kloas, Bergmann, Bacheher, Faltin, Becker, Goerlich, Rillig (bib0034) 2019; 53 Tilman (bib0057) 1985; 125 Zhang, Delgado-Baquerizo, Zhu, Chu (bib0074) 2020; 5 Caporaso, Kuczynski, Stombaugh, Caporaso, Goodrich, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Turnbaugh, Walters, Widmann, Yatsunenko, Fierer, Gordon, Zaneveld, Knight (bib0025) 2010; 7 Fuhrman, Cram, Needham (bib0015) 2015; 13 Jiao, Yang, Xu, Zhang, Lu (bib0021) 2020; 14 Seeley, Song, Passie, Hale (bib0051) 2020; 11 Raimundo, Reis, Ribeiro (bib0046) 2018; 45 Kim, Ohr (bib0024) 2020; 44 Sun, Yuan, Jia, Feng, Zhu, Dong, Liu, Kong, Tian, Duan, Ding, Wang, Xing (bib0055) 2020; 15 Wu, Lu, Sastri, Yeh, Gong, Chou, Hsieh (bib0070) 2018; 12 Mincer, Zettler, Amaral-Zettler (bib0037) 2016 Luan, Jiang, Cheng, Dini-Andreote, Sui, Xu, Geisen, Sun (bib0033) 2020; 11 Olesen, Bascompte, Dupont, Jordano (bib0042) 2007; 104 Reed, Clark, Thompson, Hughes (bib0047) 2018; 133 Hahladakis, Velis, Weber, Iacovidou, Purnell (bib0018) 2018; 344 Koljalg, Nilsson, Abarenkov, Tedersoo, Taylor, Bahram, Bates, Bruns, Bengtsson-Palme, Callaghan, Douglas, Drenkhan, Eberhardt, Duenas, Grebenc, Griffith, Hartmann, Kirk, Kohout, Larsson, Lindahl, Luecking, Martin, Matheny, Nguyen, Niskanen, Oja, Peay, Peintner, Peterson, Poldmaa, Saag, Saar, Schuessler, Scott, Senes, Smith, Suija, Taylor, Telleria, Weiss, Larsson (bib0026) 2013; 22 Sharma, Elanjickal, Mankar, Krupadam (bib0052) 2020; 398 Rillig, Lehmann (bib0048) 2020; 368 Ó Briain, Marques Mendes, McCarron, Healy, Morrison (bib0041) 2020; 182 Evangeliou, Grythe, Klimont, Heyes, Eckhardt, Lopez-Aparicio, Stohl (bib0013) 2020; 11 Bhagwat, Zhu, O Connor, Subashchandrabose, Grainge, Knight, Palanisami (bib0004) 2021 Sloan, Lunn, Woodcock, Head, Nee, Curtis (bib0053) 2006; 8 Julienne, Delorme, Lagarde (bib0022) 2019; 236 Xue, Wang, Li, Wang, Pan, Zhang (bib0071) 2020; 265 Zhou, Zhou, Tang, Zhang, Jang, Székely, Jeppesen (bib0077) 2021; 190 Geyer, Jambeck, Law (bib0017) 2017; 3 Li, Gan, Dong, Fang, Chen, Quan, Liu (bib0028) 2020; 253 Zhang (10.1016/j.watres.2021.117428_bib0074) 2020; 5 Rillig (10.1016/j.watres.2021.117428_bib0048) 2020; 368 Yang (10.1016/j.watres.2021.117428_bib0072) 2020; 54 Zhou (10.1016/j.watres.2021.117428_bib0076) 2017; 81 Van Sebille (10.1016/j.watres.2021.117428_bib0059) 2015; 10 Bowley (10.1016/j.watres.2021.117428_bib0006) 2021; 29 Clark (10.1016/j.watres.2021.117428_bib0010) 2021; 30 Wang (10.1016/j.watres.2021.117428_bib0064) 2007; 73 Jacob (10.1016/j.watres.2021.117428_bib0020) 2020; 54 Hahladakis (10.1016/j.watres.2021.117428_bib0018) 2018; 344 Sharma (10.1016/j.watres.2021.117428_bib0052) 2020; 398 Gad (10.1016/j.watres.2021.117428_bib0016) 2020; 748 Li (10.1016/j.watres.2021.117428_bib0029) 2021; 188 Mughini-Gras (10.1016/j.watres.2021.117428_bib0038) 2021; 192 Li (10.1016/j.watres.2021.117428_bib0030) 2020; 3 Kooi (10.1016/j.watres.2021.117428_bib0027) 2017; 51 Evangeliou (10.1016/j.watres.2021.117428_bib0013) 2020; 11 Zhang (10.1016/j.watres.2021.117428_bib0075) 2020; 203 Nguyen (10.1016/j.watres.2021.117428_bib0040) 2016; 20 Kim (10.1016/j.watres.2021.117428_bib0024) 2020; 44 Munari (10.1016/j.watres.2021.117428_bib0039) 2017; 122 Dąbrowska (10.1016/j.watres.2021.117428_bib0011) 2021; 167 Jiao (10.1016/j.watres.2021.117428_bib0021) 2020; 14 Sloan (10.1016/j.watres.2021.117428_bib0053) 2006; 8 Ding (10.1016/j.watres.2021.117428_bib0012) 2020; 54 Wan (10.1016/j.watres.2021.117428_bib0060) 2020; 142 Bhagwat (10.1016/j.watres.2021.117428_bib0004) 2021 Mato (10.1016/j.watres.2021.117428_bib0035) 2001; 35 Edgar (10.1016/j.watres.2021.117428_bib78) 2010; 26 Amaral-Zettler (10.1016/j.watres.2021.117428_bib0001) 2020; 18 Bergmann (10.1016/j.watres.2021.117428_bib0003) 2017; 51 Seeley (10.1016/j.watres.2021.117428_bib0051) 2020; 11 Wright (10.1016/j.watres.2021.117428_bib0068) 2020; 54 Geyer (10.1016/j.watres.2021.117428_bib0017) 2017; 3 Trojánek (10.1016/j.watres.2021.117428_bib0058) 2018; 42 Wang (10.1016/j.watres.2021.117428_bib0065) 2020; 244 Birch (10.1016/j.watres.2021.117428_bib0005) 2020; 19 Wang (10.1016/j.watres.2021.117428_bib0062) 2020; 183 Hou (10.1016/j.watres.2021.117428_bib0019) 2021; 268 Sun (10.1016/j.watres.2021.117428_bib0054) 2020; 742 Rognes (10.1016/j.watres.2021.117428_bib0050) 2016; 4 Chen (10.1016/j.watres.2021.117428_bib0007) 2014; 33 Miller (10.1016/j.watres.2021.117428_bib0036) 2020; 368 Cheung (10.1016/j.watres.2021.117428_bib0009) 2017; 122 Li (10.1016/j.watres.2021.117428_bib0031) 2020; 5 10.1016/j.watres.2021.117428_bib0044 Wang (10.1016/j.watres.2021.117428_bib0066) 2019; 245 Caporaso (10.1016/j.watres.2021.117428_bib0025) 2010; 7 Fuhrman (10.1016/j.watres.2021.117428_bib0015) 2015; 13 Banerjee (10.1016/j.watres.2021.117428_bib0002) 2018; 16 Kanhai (10.1016/j.watres.2021.117428_bib0023) 2018; 130 Wang (10.1016/j.watres.2021.117428_bib0063) 2021; 30 Wu (10.1016/j.watres.2021.117428_bib0070) 2018; 12 Ó Briain (10.1016/j.watres.2021.117428_bib0041) 2020; 182 Wang (10.1016/j.watres.2021.117428_bib0067) 2020; 389 Ragusa (10.1016/j.watres.2021.117428_bib0045) 2021; 146 Sunagawa (10.1016/j.watres.2021.117428_bib0056) 2015; 348 Raimundo (10.1016/j.watres.2021.117428_bib0046) 2018; 45 Reed (10.1016/j.watres.2021.117428_bib0047) 2018; 133 Zettler (10.1016/j.watres.2021.117428_bib0073) 2013; 47 Farjalla (10.1016/j.watres.2021.117428_bib0014) 2012; 93 Mincer (10.1016/j.watres.2021.117428_bib0037) 2016 Li (10.1016/j.watres.2021.117428_bib0028) 2020; 253 Koljalg (10.1016/j.watres.2021.117428_bib0026) 2013; 22 Machado (10.1016/j.watres.2021.117428_bib0034) 2019; 53 Xue (10.1016/j.watres.2021.117428_bib0071) 2020; 265 Zhou (10.1016/j.watres.2021.117428_bib0077) 2021; 190 Sun (10.1016/j.watres.2021.117428_bib0055) 2020; 15 Chen (10.1016/j.watres.2021.117428_bib0008) 2019; 660 Louca (10.1016/j.watres.2021.117428_bib0032) 2016; 353 Olesen (10.1016/j.watres.2021.117428_bib0042) 2007; 104 Luan (10.1016/j.watres.2021.117428_bib0033) 2020; 11 Wright (10.1016/j.watres.2021.117428_bib0069) 2021; 15 Julienne (10.1016/j.watres.2021.117428_bib0022) 2019; 236 Peeken (10.1016/j.watres.2021.117428_bib0043) 2018; 9 Wang (10.1016/j.watres.2021.117428_bib0061) 2020; 726 Tilman (10.1016/j.watres.2021.117428_bib0057) 1985; 125 |
| References_xml | – volume: 245 start-page: 965 year: 2019 end-page: 974 ident: bib0066 article-title: Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example publication-title: Environ. Pollut. – volume: 133 start-page: 460 year: 2018 end-page: 463 ident: bib0047 article-title: Microplastics in marine sediments near Rothera Research Station, Antarctica publication-title: Mar. Pollut. Bull. – volume: 44 start-page: 19 year: 2020 ident: bib0024 article-title: Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks publication-title: J. Ecol. Environ. – volume: 244 year: 2020 ident: bib0065 article-title: Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films publication-title: Chemosphere – volume: 9 start-page: 1505 year: 2018 ident: bib0043 article-title: Arctic sea ice is an important temporal sink and means of transport for microplastic publication-title: Nat. Commun. – volume: 10 year: 2015 ident: bib0059 article-title: A global inventory of small floating plastic debris publication-title: Environ. Res. Lett. – volume: 183 year: 2020 ident: bib0062 article-title: Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers publication-title: Water Res. – volume: 19 start-page: 275 year: 2020 end-page: 336 ident: bib0005 article-title: Sources, transport, measurement and impact of nano and microplastics in Urban watersheds publication-title: Rev. Environ. Sci. Biotechnol. – volume: 93 start-page: 1752 year: 2012 end-page: 1759 ident: bib0014 article-title: Ecological determinism increases with organism size publication-title: Ecology – volume: 35 start-page: 318 year: 2001 end-page: 324 ident: bib0035 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. – volume: 353 start-page: 1272 year: 2016 end-page: 1277 ident: bib0032 article-title: Decoupling function and taxonomy in the global ocean microbiome publication-title: Science – year: 2016 ident: bib0037 article-title: Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility publication-title: The Handbook of Environmental Chemistry – volume: 51 year: 2017 ident: bib0003 article-title: High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory publication-title: Environ. Sci. Technol. – volume: 81 year: 2017 ident: bib0076 article-title: Stochastic community assembly: does it matter in microbial ecology? publication-title: Microbiol. Mol. Biol. Rev. – volume: 742 year: 2020 ident: bib0054 article-title: Incidence of microplastics in personal care products: an appreciable part of plastic pollution publication-title: Sci. Total Environ. – volume: 3 start-page: 929 year: 2020 end-page: 937 ident: bib0030 article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode publication-title: Nat. Sustain. – volume: 748 year: 2020 ident: bib0016 article-title: Distinct mechanisms underlying the assembly of microeukaryotic generalists and specialists in an anthropogenically impacted river publication-title: Sci. Total Environ. – volume: 104 start-page: 19891 year: 2007 end-page: 19896 ident: bib0042 article-title: The modularity of pollination networks publication-title: Proc. Natl. Acad. Sci. – volume: 368 start-page: 1430 year: 2020 end-page: 1431 ident: bib0048 article-title: Microplastic in terrestrial ecosystems publication-title: Science – volume: 348 year: 2015 ident: bib0056 article-title: Ocean plankton. Structure and function of the global ocean microbiome publication-title: Science – volume: 20 start-page: 241 year: 2016 end-page: 248 ident: bib0040 article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol. – volume: 268 year: 2021 ident: bib0019 article-title: Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage publication-title: Environ. Pollut. – volume: 190 year: 2021 ident: bib0077 article-title: Resource aromaticity affects bacterial community successions in response to different sources of dissolved organic matter publication-title: Water Res. – volume: 4 start-page: e2584 year: 2016 ident: bib0050 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ – reference: PlasticsEurope, 2020. Plastics—the Facts 2020. – volume: 236 year: 2019 ident: bib0022 article-title: From macroplastics to microplastics: role of water in the fragmentation of polyethylene publication-title: Chemosphere – volume: 122 start-page: 161 year: 2017 end-page: 165 ident: bib0039 article-title: Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica) publication-title: Mar. Pollut. Bull. – volume: 30 start-page: 811 year: 2021 end-page: 825 ident: bib0010 article-title: What drives study-dependent differences in distance–decay relationships of microbial communities? publication-title: Glob. Ecol. Biogeogr. – volume: 344 start-page: 179 year: 2018 end-page: 199 ident: bib0018 article-title: An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling publication-title: J. Hazard. Mater. – volume: 30 start-page: 1492 year: 2021 end-page: 1504 ident: bib0063 article-title: Mechanisms of niche-neutrality balancing can drive the assembling of microbial community publication-title: Mol. Ecol. – volume: 51 start-page: 7963 year: 2017 end-page: 7971 ident: bib0027 article-title: Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics publication-title: Environ. Sci. Technol. – volume: 73 start-page: 5261 year: 2007 end-page: 5267 ident: bib0064 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl. Environ. Microb. – volume: 182 year: 2020 ident: bib0041 article-title: The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment publication-title: Water Res. – volume: 146 year: 2021 ident: bib0045 article-title: Plasticenta: first evidence of microplastics in human placenta publication-title: Environ. Int. – volume: 45 start-page: 1405 year: 2018 end-page: 1412 ident: bib0046 article-title: Rapid, simple and potentially universal method for DNA extraction from publication-title: Mol. Biol. Rep. – volume: 42 start-page: e13384 year: 2018 ident: bib0058 article-title: Application of magnetic polymethacrylate-based microspheres for the isolation of DNA from raw vegetables and processed foods of plant origin publication-title: J. Food Process. Preserv. – volume: 11 start-page: 3381 year: 2020 ident: bib0013 article-title: Atmospheric transport is a major pathway of microplastics to remote regions publication-title: Nat. Commun. – volume: 203 year: 2020 ident: bib0075 article-title: Atmospheric microplastics: a review on current status and perspectives publication-title: Earth Sci. Rev. – volume: 265 year: 2020 ident: bib0071 article-title: Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient publication-title: Environ. Pollut. – volume: 13 start-page: 133 year: 2015 end-page: 146 ident: bib0015 article-title: Marine microbial community dynamics and their ecological interpretation publication-title: Nat. Rev. Microbiol. – volume: 53 start-page: 6044 year: 2019 end-page: 6052 ident: bib0034 article-title: Microplastics can change soil properties and affect plant performance publication-title: Environ. Sci. Technol. – volume: 122 start-page: 53 year: 2017 end-page: 61 ident: bib0009 article-title: Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China publication-title: Water Res. – volume: 389 year: 2020 ident: bib0067 article-title: Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source publication-title: J. Hazard. Mater. – volume: 142 year: 2020 ident: bib0060 article-title: Biogeographic patterns of microbial association networks in paddy soil within Eastern China publication-title: Soil Biol. Biochem. – volume: 54 start-page: 7450 year: 2020 end-page: 7460 ident: bib0012 article-title: Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles publication-title: Environ. Sci. Technol. – volume: 14 start-page: 202 year: 2020 end-page: 216 ident: bib0021 article-title: Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China publication-title: ISME J. – volume: 26 start-page: 2460 year: 2010 end-page: 2461 ident: bib78 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 8 start-page: 732 year: 2006 end-page: 740 ident: bib0053 article-title: Quantifying the roles of immigration and chance in shaping prokaryote community structure publication-title: Environ. Microbiol. – volume: 16 start-page: 567 year: 2018 end-page: 576 ident: bib0002 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat. Rev. Microbiol. – volume: 398 year: 2020 ident: bib0052 article-title: Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons publication-title: J. Hazard. Mater. – volume: 54 start-page: 4733 year: 2020 end-page: 4745 ident: bib0020 article-title: Effects of virgin micro- and nanoplastics on fish: trends, meta-analysis, and perspectives publication-title: Environ. Sci. Technol. – volume: 125 start-page: 827 year: 1985 end-page: 852 ident: bib0057 article-title: The resource-ratio hypothesis of plant succession publication-title: Am. Nat. – volume: 3 year: 2017 ident: bib0017 article-title: Production, use, and fate of all plastics ever made publication-title: Sci. Adv. – volume: 11 start-page: 2372 year: 2020 ident: bib0051 article-title: Microplastics affect sedimentary microbial communities and nitrogen cycling publication-title: Nat. Commun. – volume: 54 start-page: 11657 year: 2020 end-page: 11672 ident: bib0068 article-title: Marine plastic debris: a new surface for microbial colonization publication-title: Environ. Sci. Technol. – volume: 130 start-page: 8 year: 2018 end-page: 18 ident: bib0023 article-title: Microplastics in sub-surface waters of the Arctic Central Basin publication-title: Mar. Pollut. Bull. – volume: 253 year: 2020 ident: bib0028 article-title: Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China publication-title: Chemosphere – volume: 15 start-page: 755 year: 2020 end-page: 760 ident: bib0055 article-title: Differentially charged nanoplastics demonstrate distinct accumulation in publication-title: Nat. Nanotechnol. – volume: 12 start-page: 485 year: 2018 end-page: 494 ident: bib0070 article-title: Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities publication-title: ISME J. – volume: 167 year: 2021 ident: bib0011 article-title: A roadmap for a Plastisphere publication-title: Mar. Pollut. Bull. – volume: 22 start-page: 5271 year: 2013 end-page: 5277 ident: bib0026 article-title: Towards a unified paradigm for sequence-based identification of fungi publication-title: Mol. Ecol. – volume: 47 start-page: 7137 year: 2013 end-page: 7146 ident: bib0073 article-title: Life in the “plastisphere”: microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. – volume: 18 start-page: 139 year: 2020 end-page: 151 ident: bib0001 article-title: Ecology of the plastisphere publication-title: Nat. Rev. Microbiol. – volume: 11 start-page: 6406 year: 2020 ident: bib0033 article-title: Organism body size structures the soil microbial and nematode community assembly at a continental and global scale publication-title: Nat. Commun. – volume: 15 start-page: 789 year: 2021 end-page: 806 ident: bib0069 article-title: Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere publication-title: ISME J. – reference: . – volume: 660 start-page: 136 year: 2019 end-page: 144 ident: bib0008 article-title: Variation in microbial community structure in surface seawater from Pearl River Delta: discerning the influencing factors publication-title: Sci. Total Environ. – volume: 192 year: 2021 ident: bib0038 article-title: Riverine microplastic and microbial community compositions: a field study in the Netherlands publication-title: Water Res. – volume: 54 start-page: 11322 year: 2020 end-page: 11332 ident: bib0072 article-title: Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization publication-title: Environ. Sci. Technol. – volume: 33 start-page: 166 year: 2014 end-page: 177 ident: bib0007 article-title: The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production publication-title: Acta Oceanol. Sin. – volume: 5 year: 2020 ident: bib0074 article-title: Space is more important than season when shaping soil microbial communities at a large spatial scale publication-title: MSystems – volume: 29 start-page: 107 year: 2021 end-page: 116 ident: bib0006 article-title: Oceanic hitchhikers – assessing pathogen risks from marine microplastic publication-title: Trends Microbiol. – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: bib0025 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods – volume: 368 start-page: 1183 year: 2020 end-page: 1184 ident: bib0036 article-title: Mapping Earth's deepest secrets publication-title: Science – year: 2021 ident: bib0004 article-title: Exploring the composition and functions of plastic microbiome using whole-genome sequencing publication-title: Environ. Sci. Technol. – volume: 188 year: 2021 ident: bib0029 article-title: Microplastic communities” in different environments: differences, links, and role of diversity index in source analysis publication-title: Water Res. – volume: 5 year: 2020 ident: bib0031 article-title: Spatial variation in soil fungal communities across paddy fields in subtropical China publication-title: MSystems – volume: 726 year: 2020 ident: bib0061 article-title: LDPE microplastics significantly alter the temporal turnover of soil microbial communities publication-title: Sci. Total Environ. – volume: 245 start-page: 965 year: 2019 ident: 10.1016/j.watres.2021.117428_bib0066 article-title: Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.10.110 – volume: 268 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0019 article-title: Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115756 – volume: 748 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0016 article-title: Distinct mechanisms underlying the assembly of microeukaryotic generalists and specialists in an anthropogenically impacted river publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141434 – volume: 11 start-page: 6406 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0033 article-title: Organism body size structures the soil microbial and nematode community assembly at a continental and global scale publication-title: Nat. Commun. doi: 10.1038/s41467-020-20271-4 – ident: 10.1016/j.watres.2021.117428_bib0044 – volume: 122 start-page: 161 year: 2017 ident: 10.1016/j.watres.2021.117428_bib0039 article-title: Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica) publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.06.039 – volume: 9 start-page: 1505 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0043 article-title: Arctic sea ice is an important temporal sink and means of transport for microplastic publication-title: Nat. Commun. doi: 10.1038/s41467-018-03825-5 – volume: 47 start-page: 7137 year: 2013 ident: 10.1016/j.watres.2021.117428_bib0073 article-title: Life in the “plastisphere”: microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. doi: 10.1021/es401288x – volume: 29 start-page: 107 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0006 article-title: Oceanic hitchhikers – assessing pathogen risks from marine microplastic publication-title: Trends Microbiol. doi: 10.1016/j.tim.2020.06.011 – volume: 13 start-page: 133 year: 2015 ident: 10.1016/j.watres.2021.117428_bib0015 article-title: Marine microbial community dynamics and their ecological interpretation publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3417 – volume: 104 start-page: 19891 year: 2007 ident: 10.1016/j.watres.2021.117428_bib0042 article-title: The modularity of pollination networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0706375104 – volume: 44 start-page: 19 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0024 article-title: Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks publication-title: J. Ecol. Environ. doi: 10.1186/s41610-020-00161-y – volume: 8 start-page: 732 year: 2006 ident: 10.1016/j.watres.2021.117428_bib0053 article-title: Quantifying the roles of immigration and chance in shaping prokaryote community structure publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00956.x – volume: 54 start-page: 11657 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0068 article-title: Marine plastic debris: a new surface for microbial colonization publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02305 – volume: 726 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0061 article-title: LDPE microplastics significantly alter the temporal turnover of soil microbial communities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138682 – volume: 11 start-page: 3381 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0013 article-title: Atmospheric transport is a major pathway of microplastics to remote regions publication-title: Nat. Commun. doi: 10.1038/s41467-020-17201-9 – volume: 15 start-page: 789 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0069 article-title: Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere publication-title: ISME J. doi: 10.1038/s41396-020-00814-9 – volume: 742 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0054 article-title: Incidence of microplastics in personal care products: an appreciable part of plastic pollution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140218 – volume: 93 start-page: 1752 year: 2012 ident: 10.1016/j.watres.2021.117428_bib0014 article-title: Ecological determinism increases with organism size publication-title: Ecology doi: 10.1890/11-1144.1 – volume: 146 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0045 article-title: Plasticenta: first evidence of microplastics in human placenta publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106274 – volume: 389 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0067 article-title: Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121846 – volume: 53 start-page: 6044 year: 2019 ident: 10.1016/j.watres.2021.117428_bib0034 article-title: Microplastics can change soil properties and affect plant performance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01339 – volume: 368 start-page: 1430 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0048 article-title: Microplastic in terrestrial ecosystems publication-title: Science doi: 10.1126/science.abb5979 – volume: 73 start-page: 5261 year: 2007 ident: 10.1016/j.watres.2021.117428_bib0064 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.00062-07 – volume: 12 start-page: 485 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0070 article-title: Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities publication-title: ISME J. doi: 10.1038/ismej.2017.183 – volume: 3 year: 2017 ident: 10.1016/j.watres.2021.117428_bib0017 article-title: Production, use, and fate of all plastics ever made publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – year: 2016 ident: 10.1016/j.watres.2021.117428_bib0037 article-title: Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility doi: 10.1007/698_2016_12 – year: 2021 ident: 10.1016/j.watres.2021.117428_bib0004 article-title: Exploring the composition and functions of plastic microbiome using whole-genome sequencing publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07952 – volume: 188 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0029 article-title: Microplastic communities” in different environments: differences, links, and role of diversity index in source analysis publication-title: Water Res. doi: 10.1016/j.watres.2020.116574 – volume: 368 start-page: 1183 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0036 article-title: Mapping Earth's deepest secrets publication-title: Science doi: 10.1126/science.abc3134 – volume: 42 start-page: e13384 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0058 article-title: Application of magnetic polymethacrylate-based microspheres for the isolation of DNA from raw vegetables and processed foods of plant origin publication-title: J. Food Process. Preserv. doi: 10.1111/jfpp.13384 – volume: 253 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0028 article-title: Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126740 – volume: 142 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0060 article-title: Biogeographic patterns of microbial association networks in paddy soil within Eastern China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107696 – volume: 353 start-page: 1272 year: 2016 ident: 10.1016/j.watres.2021.117428_bib0032 article-title: Decoupling function and taxonomy in the global ocean microbiome publication-title: Science doi: 10.1126/science.aaf4507 – volume: 398 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0052 article-title: Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122994 – volume: 192 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0038 article-title: Riverine microplastic and microbial community compositions: a field study in the Netherlands publication-title: Water Res. doi: 10.1016/j.watres.2021.116852 – volume: 33 start-page: 166 year: 2014 ident: 10.1016/j.watres.2021.117428_bib0007 article-title: The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production publication-title: Acta Oceanol. Sin. doi: 10.1007/s13131-014-0528-0 – volume: 182 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0041 article-title: The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment publication-title: Water Res. doi: 10.1016/j.watres.2020.116021 – volume: 11 start-page: 2372 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0051 article-title: Microplastics affect sedimentary microbial communities and nitrogen cycling publication-title: Nat. Commun. doi: 10.1038/s41467-020-16235-3 – volume: 54 start-page: 11322 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0072 article-title: Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04292 – volume: 236 year: 2019 ident: 10.1016/j.watres.2021.117428_bib0022 article-title: From macroplastics to microplastics: role of water in the fragmentation of polyethylene publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124409 – volume: 16 start-page: 567 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0002 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0024-1 – volume: 22 start-page: 5271 year: 2013 ident: 10.1016/j.watres.2021.117428_bib0026 article-title: Towards a unified paradigm for sequence-based identification of fungi publication-title: Mol. Ecol. doi: 10.1111/mec.12481 – volume: 660 start-page: 136 year: 2019 ident: 10.1016/j.watres.2021.117428_bib0008 article-title: Variation in microbial community structure in surface seawater from Pearl River Delta: discerning the influencing factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.480 – volume: 54 start-page: 4733 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0020 article-title: Effects of virgin micro- and nanoplastics on fish: trends, meta-analysis, and perspectives publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05995 – volume: 244 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0065 article-title: Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125491 – volume: 45 start-page: 1405 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0046 article-title: Rapid, simple and potentially universal method for DNA extraction from Opuntia spp. fresh cladode tissues suitable for PCR amplification publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-018-4303-8 – volume: 14 start-page: 202 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0021 article-title: Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China publication-title: ISME J. doi: 10.1038/s41396-019-0522-9 – volume: 190 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0077 article-title: Resource aromaticity affects bacterial community successions in response to different sources of dissolved organic matter publication-title: Water Res. doi: 10.1016/j.watres.2020.116776 – volume: 51 start-page: 7963 year: 2017 ident: 10.1016/j.watres.2021.117428_bib0027 article-title: Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04702 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.watres.2021.117428_bib0025 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 – volume: 30 start-page: 1492 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0063 article-title: Mechanisms of niche-neutrality balancing can drive the assembling of microbial community publication-title: Mol. Ecol. doi: 10.1111/mec.15825 – volume: 15 start-page: 755 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0055 article-title: Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0707-4 – volume: 167 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0011 article-title: A roadmap for a Plastisphere publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2021.112322 – volume: 122 start-page: 53 year: 2017 ident: 10.1016/j.watres.2021.117428_bib0009 article-title: Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China publication-title: Water Res. doi: 10.1016/j.watres.2017.05.053 – volume: 19 start-page: 275 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0005 article-title: Sources, transport, measurement and impact of nano and microplastics in Urban watersheds publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-020-09529-x – volume: 35 start-page: 318 year: 2001 ident: 10.1016/j.watres.2021.117428_bib0035 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. doi: 10.1021/es0010498 – volume: 4 start-page: e2584 year: 2016 ident: 10.1016/j.watres.2021.117428_bib0050 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 183 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0062 article-title: Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers publication-title: Water Res. doi: 10.1016/j.watres.2020.116113 – volume: 81 year: 2017 ident: 10.1016/j.watres.2021.117428_bib0076 article-title: Stochastic community assembly: does it matter in microbial ecology? publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00002-17 – volume: 3 start-page: 929 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0030 article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0567-9 – volume: 348 year: 2015 ident: 10.1016/j.watres.2021.117428_bib0056 article-title: Ocean plankton. Structure and function of the global ocean microbiome publication-title: Science doi: 10.1126/science.1261359 – volume: 18 start-page: 139 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0001 article-title: Ecology of the plastisphere publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0308-0 – volume: 344 start-page: 179 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0018 article-title: An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.10.014 – volume: 133 start-page: 460 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0047 article-title: Microplastics in marine sediments near Rothera Research Station, Antarctica publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.05.068 – volume: 20 start-page: 241 year: 2016 ident: 10.1016/j.watres.2021.117428_bib0040 article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2015.06.006 – volume: 5 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0074 article-title: Space is more important than season when shaping soil microbial communities at a large spatial scale publication-title: MSystems doi: 10.1128/msystems.00783-19 – volume: 26 start-page: 2460 year: 2010 ident: 10.1016/j.watres.2021.117428_bib78 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 30 start-page: 811 year: 2021 ident: 10.1016/j.watres.2021.117428_bib0010 article-title: What drives study-dependent differences in distance–decay relationships of microbial communities? publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13266 – volume: 203 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0075 article-title: Atmospheric microplastics: a review on current status and perspectives publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103118 – volume: 130 start-page: 8 year: 2018 ident: 10.1016/j.watres.2021.117428_bib0023 article-title: Microplastics in sub-surface waters of the Arctic Central Basin publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.03.011 – volume: 265 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0071 article-title: Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114641 – volume: 54 start-page: 7450 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0012 article-title: Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00917 – volume: 5 year: 2020 ident: 10.1016/j.watres.2021.117428_bib0031 article-title: Spatial variation in soil fungal communities across paddy fields in subtropical China publication-title: MSystems doi: 10.1128/msystems.00704-19 – volume: 125 start-page: 827 year: 1985 ident: 10.1016/j.watres.2021.117428_bib0057 article-title: The resource-ratio hypothesis of plant succession publication-title: Am. Nat. doi: 10.1086/284382 – volume: 51 year: 2017 ident: 10.1016/j.watres.2021.117428_bib0003 article-title: High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03331 – volume: 10 year: 2015 ident: 10.1016/j.watres.2021.117428_bib0059 article-title: A global inventory of small floating plastic debris publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/12/124006 |
| SSID | ssj0002239 |
| Score | 2.7049727 |
| Snippet | •Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were... Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117428 |
| SubjectTerms | Aquatic environment artificial intelligence Assembly process biomarkers dissolved organic carbon freshwater fungi habitats Interaction network internal transcribed spacers Microbial community Microplastic microplastics nitrogen pathogenicity Plastisphere redox potential salinity seawater sulfur |
| Title | The ecology of the plastisphere: Microbial composition, function, assembly, and network in the freshwater and seawater ecosystems |
| URI | https://dx.doi.org/10.1016/j.watres.2021.117428 https://www.proquest.com/docview/2555106660 https://www.proquest.com/docview/2636515920 |
| Volume | 202 |
| WOSCitedRecordID | wos000691522600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgd4QFy1cZmMxONSJXZTx7xNaAhQmZA2pL5FjuPQVFtabe3W1_0S_irn-JIUJhgg8VKliRO3OV_sc46_84WQ12kFsNEmjsq05NEwi9NIFomOOEwd5agEB9bYQuGxODrKJhP5udf7FmphLk9F02TrtVz8V1PDPjA2ls7-hbnbi8IO2AajwyeYHT7_2PBGO2klTwBYgIu8rC9QQcCWon-qrfySlQY5C7QtvNk4y4Vt8KrNWeFeRI3Z9cYRxgMxsoI4fXqlUGPR5t6Ncl-g64sNFfRZeMsMHvPKQlOrcbp2tPo2ETGu_fJ_81VP1bzL9LvRaFxXpm75Prbt8XS1CDOvYyi4psjUndVmM6HBkpax5bNsodKmozXZkRulVLkTnB4YN1hnAleHnFJnGM2ZLeC-OTO4JMVsAPcC_uwAO8YF66EvTf9Rc_sYu8PeICCOIeQbbZFtJlKZ9cn2wYfDycd2sgfvSgYSA54QqjMthfBmX7_yfn7yA6xzc_KA3PdRCT1waHpIeqZ5RO5taFU-JteAK-pxRecVBQzQTVy9oS2q6Aaq9mnA1D4NiIKtpqQeT7Ru7LU6PNmjAU-0w9MT8uXd4cnb95F_f0ekuWBLePyl5qnSEBGoRBheVSwpmKiENokC11AolWmVZjLWTEnYW5gEJpBSK4gjCqn4U9Jv5o3ZIZTBRTSD0HaYSiSEyKICR9bEXGt0gZNdwsN9zbUXt8d3rJzmgcU4y501crRG7qyxS6L2rIUTd7mlvQgmy72D6hzPHFB2y5mvgoVzGL9xUU41Zr6CRinELJhEiH_TZsRHGHew-Nk__4Ln5G73sL0g_eX5yrwkd_QlwOR8j2yJSbbnwf0dwWrS4g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ecology+of+the+plastisphere%3A+Microbial+composition%2C+function%2C+assembly%2C+and+network+in+the+freshwater+and+seawater+ecosystems&rft.jtitle=Water+research+%28Oxford%29&rft.au=Li%2C+Changchao&rft.au=Wang%2C+Lifei&rft.au=Ji%2C+Shuping&rft.au=Chang%2C+Mengjie&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=202&rft_id=info:doi/10.1016%2Fj.watres.2021.117428&rft.externalDocID=S0043135421006266 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |