High Cooperativity in Negative Feedback can Amplify Noisy Gene Expression

Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in t...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology Vol. 80; no. 7; pp. 1871 - 1899
Main Authors: Bokes, Pavol, Lin, Yen Ting, Singh, Abhyudai
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2018
Springer Nature B.V
Subjects:
ISSN:0092-8240, 1522-9602, 1522-9602
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in the excess of protein. Increasing the strength of the feedback may lead to dramatically different outcomes depending on a key parameter, the noise load, which is defined as the squared coefficient of variation the protein exhibits in the absence of feedback. Combining stochastic simulation with asymptotic analysis, we identify a critical value of noise load: for noise loads smaller than critical, the coefficient of variation remains bounded with increasing feedback strength; contrastingly, if the noise load is larger than critical, the coefficient of variation diverges to infinity in the limit of ever greater feedback strengths. Interestingly, feedbacks with lower cooperativities have higher critical noise loads, suggesting that they can be preferable for controlling noisy proteins.
AbstractList Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in the excess of protein. Increasing the strength of the feedback may lead to dramatically different outcomes depending on a key parameter, the noise load, which is defined as the squared coefficient of variation the protein exhibits in the absence of feedback. Combining stochastic simulation with asymptotic analysis, we identify a critical value of noise load: for noise loads smaller than critical, the coefficient of variation remains bounded with increasing feedback strength; contrastingly, if the noise load is larger than critical, the coefficient of variation diverges to infinity in the limit of ever greater feedback strengths. Interestingly, feedbacks with lower cooperativities have higher critical noise loads, suggesting that they can be preferable for controlling noisy proteins.Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in the excess of protein. Increasing the strength of the feedback may lead to dramatically different outcomes depending on a key parameter, the noise load, which is defined as the squared coefficient of variation the protein exhibits in the absence of feedback. Combining stochastic simulation with asymptotic analysis, we identify a critical value of noise load: for noise loads smaller than critical, the coefficient of variation remains bounded with increasing feedback strength; contrastingly, if the noise load is larger than critical, the coefficient of variation diverges to infinity in the limit of ever greater feedback strengths. Interestingly, feedbacks with lower cooperativities have higher critical noise loads, suggesting that they can be preferable for controlling noisy proteins.
Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in the excess of protein. Increasing the strength of the feedback may lead to dramatically different outcomes depending on a key parameter, the noise load, which is defined as the squared coefficient of variation the protein exhibits in the absence of feedback. Combining stochastic simulation with asymptotic analysis, we identify a critical value of noise load: for noise loads smaller than critical, the coefficient of variation remains bounded with increasing feedback strength; contrastingly, if the noise load is larger than critical, the coefficient of variation diverges to infinity in the limit of ever greater feedback strengths. Interestingly, feedbacks with lower cooperativities have higher critical noise loads, suggesting that they can be preferable for controlling noisy proteins.
Author Singh, Abhyudai
Bokes, Pavol
Lin, Yen Ting
Author_xml – sequence: 1
  givenname: Pavol
  orcidid: 0000-0002-8414-6933
  surname: Bokes
  fullname: Bokes, Pavol
  email: pavol.bokes@fmph.uniba.sk
  organization: Department of Applied Mathematics and Statistics, Comenius University
– sequence: 2
  givenname: Yen Ting
  surname: Lin
  fullname: Lin, Yen Ting
  organization: Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Statistical Physics and Complex System Group, School of Physics and Astronomy, The University of Manchester
– sequence: 3
  givenname: Abhyudai
  surname: Singh
  fullname: Singh, Abhyudai
  organization: Department of Electrical and Computer Engineering, University of Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29696600$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxDAUhoMoOl4ewI0E3LipniRtZ7KUYbyA6EbXIU1Px2gnqUlH7NubcbyAoIvc4PtODuffJZvOOyTkkMEpAxifRcYKMcmApZWny7BBRqzgPJMl8E0yApA8m_AcdshujE-QHCnkNtnhspRlCTAi11d2_kin3ncYdG9fbT9Q6-gtzlcvpBeIdaXNMzXa0fNF19pmoLfexoFeokM6e-sCxmi92ydbjW4jHnyee-ThYnY_vcpu7i6vp-c3mRFj3mcVoqmwaEwpkRWFqJuyNCCNzKtacN0IOdElVJpJzhB5LRptoDbINatAj0HskZN13S74lyXGXi1sNNi22qFfRsVBsJzD5AM9_oU--WVwqbsVBUUu0p6oo09qWS2wVl2wCx0G9TWkBLA1YIKPMWDzjTBQqyDUOgiVglCrINSQnPEvx9g-jdS7Pmjb_mvytRnTL26O4afpv6V3Mt2cVQ
CitedBy_id crossref_primary_10_1007_s00285_020_01512_y
crossref_primary_10_1007_s00285_021_01549_7
crossref_primary_10_1007_s00285_018_1277_z
crossref_primary_10_1088_1742_5468_ac2edb
crossref_primary_10_1007_s00294_018_0879_8
crossref_primary_10_1109_TCBB_2019_2938502
crossref_primary_10_3390_math10132169
Cites_doi 10.1371/journal.pcbi.0020117
10.1371/journal.pone.0079345
10.1103/PhysRevE.84.021128
10.1016/j.jtbi.2016.08.018
10.1109/TNB.2011.2168826
10.1007/s11538-015-0131-3
10.1126/science.1188308
10.1126/science.1216379
10.1007/s11538-016-0149-1
10.1103/PhysRevE.94.032401
10.1016/j.bpj.2013.02.027
10.1073/pnas.0610468104
10.1098/rsif.2016.0833
10.1007/s00285-017-1116-7
10.1073/pnas.1008965107
10.1371/journal.pone.0120555
10.1039/C5IB00230C
10.1101/gr.1196503
10.1016/0021-9991(76)90041-3
10.1103/PhysRevLett.113.268105
10.1186/1752-0509-2-6
10.1016/0022-5193(68)90189-6
10.1103/PhysRevLett.97.168302
10.1073/pnas.1213530109
10.1073/pnas.94.3.814
10.1016/j.cjph.2016.12.006
10.1098/rsif.2014.0108
10.1016/j.bpj.2009.02.064
10.1016/S0960-9822(03)00494-9
10.1063/1.4871694
10.1038/ncomms2867
10.1017/CBO9781139172189
10.1038/ng869
10.1038/nature01546
10.1017/CBO9781107050242
10.1016/j.cell.2005.09.031
10.1007/b98869
10.1103/PhysRevE.84.021928
10.1038/35014651
10.1016/j.copbio.2008.06.011
10.1103/PhysRevE.91.062119
10.1007/s00285-016-1059-4
10.1103/PhysRevE.91.012704
10.1016/S0022-2836(02)00994-4
10.1007/s11538-016-0178-9
10.1073/pnas.151588598
10.1103/PhysRevE.93.022409
10.1016/j.jtbi.2017.03.017
10.1088/1478-3975/aa6e5a
10.1126/science.1070919
10.1016/0092-8674(81)90520-1
10.1103/PhysRevLett.115.208101
10.1007/s11538-013-9811-z
10.1016/j.jmb.2004.09.073
10.1038/nature04599
10.1088/1751-8113/48/18/185001
10.1103/PhysRevE.92.062717
10.1088/1742-5468/2016/11/113501
10.1007/s00285-015-0876-1
10.1126/science.1198817
10.1016/j.bpj.2014.09.042
10.1098/rsif.2015.0772
ContentType Journal Article
Copyright Society for Mathematical Biology 2018
Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Society for Mathematical Biology 2018
– notice: Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1007/s11538-018-0438-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Computer Science Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1522-9602
EndPage 1899
ExternalDocumentID 29696600
10_1007_s11538_018_0438_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1312926
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Agency for Research and Development
  grantid: APVV-14-0378
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/K037145/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: VEGA Grant Agency
  grantid: 1/0319/15
GroupedDBID ---
--K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06D
0R~
0VY
199
1B1
1N0
1RT
1~5
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3O-
3V.
4.4
406
408
40D
40E
4G.
53G
5GY
5RE
5VS
67Z
6J9
6NX
7-5
71M
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AACTN
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALCJ
AALRI
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMAC
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACRPL
ACZOJ
ADBBV
ADFGL
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHHHB
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AITUG
AJBLW
AJRNO
AJZVZ
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DM4
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FIRID
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-2
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLV
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KDC
KOV
L6V
LG5
LK8
LLZTM
LW8
M0L
M1P
M4Y
M7P
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O-L
O9-
O93
O9G
O9I
O9J
OZT
P19
P2P
P62
P9R
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R2-
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAB
SAP
SCLPG
SDD
SDH
SDM
SEW
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSZ
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WUQ
XPP
XSW
YLTOR
Z45
Z7U
Z83
ZGI
ZMT
ZMTXR
ZWQNP
ZXP
~A9
~EX
~KM
9DU
AAPKM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIGII
AIXLP
AMVHM
ATHPR
AYFIA
AZQEC
CITATION
DWQXO
GNUQQ
M2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7XB
8FK
JQ2
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-beecbe5fc69e1553df66c09c94bd32af398a60ba1921ee2d3fac0dce2a1b0a703
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435403200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0092-8240
1522-9602
IngestDate Mon Sep 29 05:50:56 EDT 2025
Thu Dec 04 03:34:44 EST 2025
Wed Feb 19 02:34:06 EST 2025
Sat Nov 29 03:48:42 EST 2025
Tue Nov 18 22:12:44 EST 2025
Fri Feb 21 02:39:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Asymptotic expansions
Negative feedback
60K40
Stochastic gene expression
Delayed production
41A60
Protein bursting
92C40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-beecbe5fc69e1553df66c09c94bd32af398a60ba1921ee2d3fac0dce2a1b0a703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8414-6933
PMID 29696600
PQID 2030543030
PQPubID 55445
PageCount 29
ParticipantIDs proquest_miscellaneous_2031420870
proquest_journals_2030543030
pubmed_primary_29696600
crossref_primary_10_1007_s11538_018_0438_y
crossref_citationtrail_10_1007_s11538_018_0438_y
springer_journals_10_1007_s11538_018_0438_y
PublicationCentury 2000
PublicationDate 20180700
2018-7-00
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 7
  year: 2018
  text: 20180700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle A Journal Devoted to Research at the Junction of Computational, Theoretical and Experimental Biology Official Journal of The Society for Mathematical Biology
PublicationTitle Bulletin of mathematical biology
PublicationTitleAbbrev Bull Math Biol
PublicationTitleAlternate Bull Math Biol
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References JohnsonRMunskyBThe finite state projection approach to analyze dynamics of heterogeneous populationsPhys Biol20171403500210.1088/1478-3975/aa6e5a
StekelDJJenkinsDJStrong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expressionBmc Syst Biol20082610.1186/1752-0509-2-6
GriffithJMathematics of cellular control processes I. Negative feedback to one geneJ Theor Biol19682020220810.1016/0022-5193(68)90189-6
LinYTGallaTBursting noise in gene expression dynamics: linking microscopic and mesoscopic modelsJ R Soc Interface2016132015077210.1098/rsif.2015.0772
AbramowitzMStegunIHandbook of mathematical functions with formulas, graphs, and mathematical tables1972Washington, DCNational Bureau of Standards0543.33001
MonkNOscillatory expression of hes1, p53, and nf-κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}b driven by transcriptional time delaysCurr Biol2003131409141310.1016/S0960-9822(03)00494-9
YangXWuYYuanZCharacteristics of mrna dynamics in a multi-on model of stochastic transcription with regulationChin. J Phys20175550851810.1016/j.cjph.2016.12.006
FriedmanNCaiLXieXLinking stochastic dynamics to population distribution: an analytical framework of gene expressionPhys Rev Lett20069716830210.1103/PhysRevLett.97.168302
DarRDRazookyBSSinghATrimeloniTVMcCollumJMCoxCDSimpsonMLWeinbergerLSTranscriptional burst frequency and burst size are equally modulated across the human genomeProc Natl Acad Sci USA2012109174541745910.1073/pnas.1213530109
BiancalaniTAssafMGenetic toggle switch in the absence of cooperative binding: exact resultsPhys Rev Lett201511520810110.1103/PhysRevLett.115.208101
PopovicNMarrCSwainPSA geometric analysis of fast-slow models for stochastic gene expressionJ Math Biol20167287122343787810.1007/s00285-015-0876-11338.34105
SinghANegative feedback through mrna provides the best control of gene-expression noiseIEEE Trans Nanobiosci20111019420010.1109/TNB.2011.2168826
HinchEJPerturbation methods1991CambridgeCambridge University Press10.1017/CBO97811391721890746.34001
SinghAHespanhaJPOptimal feedback strength for noise suppression in autoregulatory gene networksBiophys J2009964013402310.1016/j.bpj.2009.02.064
Schikora-TamaritMAToscano-OchoaCEspinosJDEspinarLCareyLBA synthetic gene circuit for measuring autoregulatory feedback controlIntegr Biol2016854655510.1039/C5IB00230C
KumarNPlatiniTKulkarniRVExact distributions for stochastic gene expression models with bursting and feedbackPhys Rev Lett201411326810510.1103/PhysRevLett.113.268105
Newby J (2015) Bistable switching asymptotics for the self regulating gene. J Phys A Math Theor 48:185001
BokesPSinghAProtein copy number distributions for a self-regulating gene in the presence of decoy binding sitesPLoS ONE201510e012055510.1371/journal.pone.0120555
LeierABarrioMMarquez-LagoTTExact model reduction with delays: closed-form distributions and extensions to fully bi-directional monomolecular reactionsJ R Soc Interface2014112014010810.1098/rsif.2014.0108
InnocentiniGCForgerMRadulescuOAntoneliFProtein synthesis driven by dynamical stochastic transcriptionBull Math Biol201678110131345231610.1007/s11538-015-0131-31356.92032
ThattaiMvan OudenaardenAIntrinsic noise in gene regulatory networksProc Natl Acad Sci USA20019815158859810.1073/pnas.151588598
CaiLFriedmanNXieXStochastic protein expression in individual cells at the single molecule levelNature200644035836210.1038/nature04599
GoldingIPaulssonJZawilskiSCoxEReal-time kinetics of gene activity in individual bacteriaCell20051231025103610.1016/j.cell.2005.09.031
SmithSShahrezaeiVGeneral transient solution of the one-step master equation in one dimensionPhys Rev E2015916062119349135010.1103/PhysRevE.91.062119
SwainPSEfficient attenuation of stochasticity in gene expression through post-transcriptional controlJ Mol Biol200434496597610.1016/j.jmb.2004.09.073
SuterDMMolinaNGatfieldDSchneiderKSchiblerUNaefFMammalian genes are transcribed with widely different bursting kineticsScience201133247247410.1126/science.1198817
BarenblattGIScaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics1996CambridgeCambridge University Press10.1017/CBO97811070502420907.76002
ElfJEhrenbergMFast evaluation of fluctuations in biochemical networks with the linear noise approximationGenome Res2003132475248410.1101/gr.1196503
BokesPSinghAGene expression noise is affected differentially by feedback in burst frequency and burst sizeJ Math Biol20177414831509363479010.1007/s00285-016-1059-41366.92036
MaarleveldTROlivierBGBruggemanFJStochpy: a comprehensive, user-friendly tool for simulating stochastic biological processesPLoS ONE20138e7934510.1371/journal.pone.0079345
WangJLefrancMThommenQStochastic oscillations induced by intrinsic fluctuations in a self-repressing geneBiophys J2014107102403241610.1016/j.bpj.2014.09.042
Ochab-MarcinekATabakaMTranscriptional leakage versus noise: a simple mechanism of conversion between binary and graded response in autoregulated genesPhys Rev E20159101270410.1103/PhysRevE.91.012704
DattaniJBarahonaMStochastic models of gene transcription with upstream drives: exact solution and sample path characterizationJ R Soc Interface2017142016083310.1098/rsif.2016.0833
TaniguchiYChoiPLiGChenHBabuMHearnJEmiliAXieXQuantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cellsScience201032953353810.1126/science.1188308
OzbudakEMThattaiMKurtserIGrossmanADVan OudenaardenARegulation of noise in the expression of a single geneNat Genet200231697310.1038/ng869
JedrakJOchab-MarcinekAInfluence of gene copy number on self-regulated gene expressionJ Theor Biol2016408222236354896710.1016/j.jtbi.2016.08.0181352.92053
JedrakJOchab-MarcinekATime-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound poisson processPhys Rev E20169403240110.1103/PhysRevE.94.0324011352.92053
LinYTDoeringCRGene expression dynamics with stochastic bursts: construction and exact results for a coarse-grained modelPhys Rev E201693022409369045210.1103/PhysRevE.93.022409
ScottMHwaTIngallsBDeterministic characterization of stochastic genetic circuitsProc Natl Acad Sci USA2007104187402740710.1073/pnas.0610468104
BokesPKingJWoodALooseMTranscriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expressionBull Math Biol201375351371302235810.1007/s11538-013-9811-z1278.92009
SoltaniMBokesPFoxZSinghANonspecific transcription factor binding can reduce noise in the expression of downstream proteinsPhys Biol201512055002
PájaroMAlonsoAAOtero-MurasIVázquezCStochastic modeling and numerical simulation of gene regulatory networks with protein burstingJ Theor Biol20174215170363811310.1016/j.jtbi.2017.03.0171370.92061
LesterCBakerREGilesMBYatesCAExtending the multi-level method for the simulation of stochastic biological systemsBull Math Biol20167816401677355188810.1007/s11538-016-0178-91352.92062
Be’erSAssafMRare events in stochastic populations under bursty reproductionJ Stat Mech Theory Exp20162016113501358098410.1088/1742-5468/2016/11/113501
PlatiniTJiaTKulkarniRVRegulation by small rnas via coupled degradation: mean-field and variational approachesPhys Rev E20118402192810.1103/PhysRevE.84.021928
DessallesRFromionVRobertPA stochastic analysis of autoregulation of gene expressionJ Math Biol201736947011373.92040
AlbertsBJohnsonALewisJRaffMRobertsKWalterPMolecular biology of the cell2002New YorkGarland Science
RobertsEBe’erSBohrerCSharmaRAssafMDynamics of simple gene-network motifs subject to extrinsic fluctuationsPhys Rev E20159206271710.1103/PhysRevE.92.062717
BarrioMBurrageKLeierATianTOscillatory regulation of hes1: discrete stochastic delay modelling and simulationPLoS Comput Biol20062e11710.1371/journal.pcbi.0020117
ElowitzMLevineASiggiaESwainPStochastic gene expression in a single cellScience20022971183118610.1126/science.1070919
GillespieDA general method for numerically simulating stochastic time evolution of coupled chemical reactionsJ Comput Phys19762240343450337010.1016/0021-9991(76)90041-3
MunskyBNeuertGVan OudenaardenAUsing gene expression noise to understand gene regulationScience2012336183187295418910.1126/science.12163791355.92069
BrunaMChapmanSJSmithMJModel reduction for slow-fast stochastic systems with metastable behaviourJ Chem Phys201414017410710.1063/1.4871694
SchussZTheory and applications of stochastic processes: an analytical approach2009BerlinSpringer Science & Business Media1202.60005
McAdamsHArkinAStochastic mechanisms in gene expressionProc Natl Acad Sci USA19979481481910.1073/pnas.94.3.814
YatesJLNomuraMFeedback regulation of ribosomal protein synthesis in E. coli: localization of the mrna target sites for repressor action of ribosomal protein l1Cell19812424324910.1016/0092-8674(81)90520-1
BecskeiASerranoLEngineering stability in gene networks by autoregulationNature200040559059310.1038/35014651
BlakeWKaernMCantorCCollinsJNoise in eukaryotic gene expressionNature200342263363710.1038/nature01546
Ochab-MarcinekATabakaMBimodal gene expression in noncooperative regulatory systemsProc Natl Acad Sci USA2010107220962210110.1073/pnas.1008965107
RosenfeldNElowitzMBAlonUNegative autoregulation speeds the response times of transcription networksJ Mol Biol200232378579310.1016/S0022-2836(02)00994-4
GrönlundALötstedtPElfJTranscription factor binding kinetics constrain noise suppression via negative feedbackNat Commun20134186410.1038/ncomms2867
KomorowskiMMiekiszJStumpfMPDecomposing noise in biochemical signaling systems highlights the role of protein degradationBiophys J20131041783179310.1016/j.bpj.2013.02.027
MurrayJMathematical biology: I introduction2003New YorkSpringer
CaoYTerebusALiangJState space truncation with quantified errors for accurate solutions to discrete chemical master equatio
J Wang (438_CR64) 2014; 107
M Elowitz (438_CR19) 2002; 297
A Ochab-Marcinek (438_CR44) 2015; 91
P Bokes (438_CR10) 2017; 74
J Elf (438_CR18) 2003; 13
B Alberts (438_CR2) 2002
EJ Hinch (438_CR25) 1991
RD Dar (438_CR15) 2012; 109
MA Schikora-Tamarit (438_CR51) 2016; 8
Z Schuss (438_CR52) 2009
M Bruna (438_CR12) 2014; 140
A Ochab-Marcinek (438_CR43) 2010; 107
P Bokes (438_CR11) 2013; 75
438_CR42
M Barrio (438_CR4) 2006; 2
DM Suter (438_CR60) 2011; 332
M Scott (438_CR53) 2007; 104
I Golding (438_CR22) 2005; 123
A Singh (438_CR56) 2009; 96
S Be’er (438_CR6) 2016; 2016
D Gillespie (438_CR21) 1976; 22
M Thattai (438_CR63) 2001; 98
J Jedrak (438_CR28) 2016; 94
M Soltani (438_CR58) 2015; 12
YT Lin (438_CR35) 2016; 93
Y Cao (438_CR14) 2016; 78
Y Taniguchi (438_CR62) 2010; 329
N Monk (438_CR39) 2003; 13
J Murray (438_CR41) 2003
J Dattani (438_CR16) 2017; 14
A Becskei (438_CR5) 2000; 405
GC Innocentini (438_CR26) 2016; 78
TR Maarleveld (438_CR37) 2013; 8
T Biancalani (438_CR7) 2015; 115
M Pájaro (438_CR46) 2017; 421
E Roberts (438_CR49) 2015; 92
R Dessalles (438_CR17) 2017
A Leier (438_CR33) 2014; 11
T Platini (438_CR47) 2011; 84
L Lafuerza (438_CR32) 2011; 84
JL Yates (438_CR66) 1981; 24
M Komorowski (438_CR30) 2013; 104
J Jedrak (438_CR27) 2016; 408
YT Lin (438_CR36) 2016; 13
H McAdams (438_CR38) 1997; 94
M Abramowitz (438_CR1) 1972
L Cai (438_CR13) 2006; 440
GI Barenblatt (438_CR3) 1996
A Grönlund (438_CR24) 2013; 4
EM Ozbudak (438_CR45) 2002; 31
V Shahrezaei (438_CR54) 2008; 19
N Kumar (438_CR31) 2014; 113
C Lester (438_CR34) 2016; 78
DJ Stekel (438_CR59) 2008; 2
N Rosenfeld (438_CR50) 2002; 323
S Smith (438_CR57) 2015; 91
P Bokes (438_CR9) 2015; 10
B Munsky (438_CR40) 2012; 336
J Griffith (438_CR23) 1968; 20
R Johnson (438_CR29) 2017; 14
A Singh (438_CR55) 2011; 10
X Yang (438_CR65) 2017; 55
W Blake (438_CR8) 2003; 422
N Friedman (438_CR20) 2006; 97
PS Swain (438_CR61) 2004; 344
N Popovic (438_CR48) 2016; 72
References_xml – reference: InnocentiniGCForgerMRadulescuOAntoneliFProtein synthesis driven by dynamical stochastic transcriptionBull Math Biol201678110131345231610.1007/s11538-015-0131-31356.92032
– reference: BiancalaniTAssafMGenetic toggle switch in the absence of cooperative binding: exact resultsPhys Rev Lett201511520810110.1103/PhysRevLett.115.208101
– reference: JedrakJOchab-MarcinekATime-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound poisson processPhys Rev E20169403240110.1103/PhysRevE.94.0324011352.92053
– reference: PlatiniTJiaTKulkarniRVRegulation by small rnas via coupled degradation: mean-field and variational approachesPhys Rev E20118402192810.1103/PhysRevE.84.021928
– reference: LinYTGallaTBursting noise in gene expression dynamics: linking microscopic and mesoscopic modelsJ R Soc Interface2016132015077210.1098/rsif.2015.0772
– reference: SwainPSEfficient attenuation of stochasticity in gene expression through post-transcriptional controlJ Mol Biol200434496597610.1016/j.jmb.2004.09.073
– reference: AlbertsBJohnsonALewisJRaffMRobertsKWalterPMolecular biology of the cell2002New YorkGarland Science
– reference: YangXWuYYuanZCharacteristics of mrna dynamics in a multi-on model of stochastic transcription with regulationChin. J Phys20175550851810.1016/j.cjph.2016.12.006
– reference: Ochab-MarcinekATabakaMBimodal gene expression in noncooperative regulatory systemsProc Natl Acad Sci USA2010107220962210110.1073/pnas.1008965107
– reference: Newby J (2015) Bistable switching asymptotics for the self regulating gene. J Phys A Math Theor 48:185001
– reference: BecskeiASerranoLEngineering stability in gene networks by autoregulationNature200040559059310.1038/35014651
– reference: BokesPKingJWoodALooseMTranscriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expressionBull Math Biol201375351371302235810.1007/s11538-013-9811-z1278.92009
– reference: LafuerzaLToralRRole of delay in the stochastic creation processPhys Rev E20118402112810.1103/PhysRevE.84.021128
– reference: CaoYTerebusALiangJState space truncation with quantified errors for accurate solutions to discrete chemical master equationBull Math Biol201678617661349456710.1007/s11538-016-0149-11341.92086
– reference: ShahrezaeiVSwainPThe stochastic nature of biochemical networksCurr Opin Biotechnol20081936937410.1016/j.copbio.2008.06.011
– reference: MaarleveldTROlivierBGBruggemanFJStochpy: a comprehensive, user-friendly tool for simulating stochastic biological processesPLoS ONE20138e7934510.1371/journal.pone.0079345
– reference: ScottMHwaTIngallsBDeterministic characterization of stochastic genetic circuitsProc Natl Acad Sci USA2007104187402740710.1073/pnas.0610468104
– reference: SinghANegative feedback through mrna provides the best control of gene-expression noiseIEEE Trans Nanobiosci20111019420010.1109/TNB.2011.2168826
– reference: GrönlundALötstedtPElfJTranscription factor binding kinetics constrain noise suppression via negative feedbackNat Commun20134186410.1038/ncomms2867
– reference: Schikora-TamaritMAToscano-OchoaCEspinosJDEspinarLCareyLBA synthetic gene circuit for measuring autoregulatory feedback controlIntegr Biol2016854655510.1039/C5IB00230C
– reference: SmithSShahrezaeiVGeneral transient solution of the one-step master equation in one dimensionPhys Rev E2015916062119349135010.1103/PhysRevE.91.062119
– reference: BlakeWKaernMCantorCCollinsJNoise in eukaryotic gene expressionNature200342263363710.1038/nature01546
– reference: LesterCBakerREGilesMBYatesCAExtending the multi-level method for the simulation of stochastic biological systemsBull Math Biol20167816401677355188810.1007/s11538-016-0178-91352.92062
– reference: Be’erSAssafMRare events in stochastic populations under bursty reproductionJ Stat Mech Theory Exp20162016113501358098410.1088/1742-5468/2016/11/113501
– reference: OzbudakEMThattaiMKurtserIGrossmanADVan OudenaardenARegulation of noise in the expression of a single geneNat Genet200231697310.1038/ng869
– reference: FriedmanNCaiLXieXLinking stochastic dynamics to population distribution: an analytical framework of gene expressionPhys Rev Lett20069716830210.1103/PhysRevLett.97.168302
– reference: PájaroMAlonsoAAOtero-MurasIVázquezCStochastic modeling and numerical simulation of gene regulatory networks with protein burstingJ Theor Biol20174215170363811310.1016/j.jtbi.2017.03.0171370.92061
– reference: LinYTDoeringCRGene expression dynamics with stochastic bursts: construction and exact results for a coarse-grained modelPhys Rev E201693022409369045210.1103/PhysRevE.93.022409
– reference: YatesJLNomuraMFeedback regulation of ribosomal protein synthesis in E. coli: localization of the mrna target sites for repressor action of ribosomal protein l1Cell19812424324910.1016/0092-8674(81)90520-1
– reference: GoldingIPaulssonJZawilskiSCoxEReal-time kinetics of gene activity in individual bacteriaCell20051231025103610.1016/j.cell.2005.09.031
– reference: RobertsEBe’erSBohrerCSharmaRAssafMDynamics of simple gene-network motifs subject to extrinsic fluctuationsPhys Rev E20159206271710.1103/PhysRevE.92.062717
– reference: SchussZTheory and applications of stochastic processes: an analytical approach2009BerlinSpringer Science & Business Media1202.60005
– reference: MonkNOscillatory expression of hes1, p53, and nf-κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}b driven by transcriptional time delaysCurr Biol2003131409141310.1016/S0960-9822(03)00494-9
– reference: KomorowskiMMiekiszJStumpfMPDecomposing noise in biochemical signaling systems highlights the role of protein degradationBiophys J20131041783179310.1016/j.bpj.2013.02.027
– reference: ElowitzMLevineASiggiaESwainPStochastic gene expression in a single cellScience20022971183118610.1126/science.1070919
– reference: McAdamsHArkinAStochastic mechanisms in gene expressionProc Natl Acad Sci USA19979481481910.1073/pnas.94.3.814
– reference: SoltaniMBokesPFoxZSinghANonspecific transcription factor binding can reduce noise in the expression of downstream proteinsPhys Biol201512055002
– reference: AbramowitzMStegunIHandbook of mathematical functions with formulas, graphs, and mathematical tables1972Washington, DCNational Bureau of Standards0543.33001
– reference: DattaniJBarahonaMStochastic models of gene transcription with upstream drives: exact solution and sample path characterizationJ R Soc Interface2017142016083310.1098/rsif.2016.0833
– reference: GillespieDA general method for numerically simulating stochastic time evolution of coupled chemical reactionsJ Comput Phys19762240343450337010.1016/0021-9991(76)90041-3
– reference: HinchEJPerturbation methods1991CambridgeCambridge University Press10.1017/CBO97811391721890746.34001
– reference: Ochab-MarcinekATabakaMTranscriptional leakage versus noise: a simple mechanism of conversion between binary and graded response in autoregulated genesPhys Rev E20159101270410.1103/PhysRevE.91.012704
– reference: SinghAHespanhaJPOptimal feedback strength for noise suppression in autoregulatory gene networksBiophys J2009964013402310.1016/j.bpj.2009.02.064
– reference: JedrakJOchab-MarcinekAInfluence of gene copy number on self-regulated gene expressionJ Theor Biol2016408222236354896710.1016/j.jtbi.2016.08.0181352.92053
– reference: RosenfeldNElowitzMBAlonUNegative autoregulation speeds the response times of transcription networksJ Mol Biol200232378579310.1016/S0022-2836(02)00994-4
– reference: DarRDRazookyBSSinghATrimeloniTVMcCollumJMCoxCDSimpsonMLWeinbergerLSTranscriptional burst frequency and burst size are equally modulated across the human genomeProc Natl Acad Sci USA2012109174541745910.1073/pnas.1213530109
– reference: MurrayJMathematical biology: I introduction2003New YorkSpringer
– reference: BrunaMChapmanSJSmithMJModel reduction for slow-fast stochastic systems with metastable behaviourJ Chem Phys201414017410710.1063/1.4871694
– reference: DessallesRFromionVRobertPA stochastic analysis of autoregulation of gene expressionJ Math Biol201736947011373.92040
– reference: SuterDMMolinaNGatfieldDSchneiderKSchiblerUNaefFMammalian genes are transcribed with widely different bursting kineticsScience201133247247410.1126/science.1198817
– reference: BokesPSinghAProtein copy number distributions for a self-regulating gene in the presence of decoy binding sitesPLoS ONE201510e012055510.1371/journal.pone.0120555
– reference: KumarNPlatiniTKulkarniRVExact distributions for stochastic gene expression models with bursting and feedbackPhys Rev Lett201411326810510.1103/PhysRevLett.113.268105
– reference: MunskyBNeuertGVan OudenaardenAUsing gene expression noise to understand gene regulationScience2012336183187295418910.1126/science.12163791355.92069
– reference: JohnsonRMunskyBThe finite state projection approach to analyze dynamics of heterogeneous populationsPhys Biol20171403500210.1088/1478-3975/aa6e5a
– reference: CaiLFriedmanNXieXStochastic protein expression in individual cells at the single molecule levelNature200644035836210.1038/nature04599
– reference: BokesPSinghAGene expression noise is affected differentially by feedback in burst frequency and burst sizeJ Math Biol20177414831509363479010.1007/s00285-016-1059-41366.92036
– reference: TaniguchiYChoiPLiGChenHBabuMHearnJEmiliAXieXQuantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cellsScience201032953353810.1126/science.1188308
– reference: ElfJEhrenbergMFast evaluation of fluctuations in biochemical networks with the linear noise approximationGenome Res2003132475248410.1101/gr.1196503
– reference: StekelDJJenkinsDJStrong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expressionBmc Syst Biol20082610.1186/1752-0509-2-6
– reference: BarenblattGIScaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics1996CambridgeCambridge University Press10.1017/CBO97811070502420907.76002
– reference: GriffithJMathematics of cellular control processes I. Negative feedback to one geneJ Theor Biol19682020220810.1016/0022-5193(68)90189-6
– reference: LeierABarrioMMarquez-LagoTTExact model reduction with delays: closed-form distributions and extensions to fully bi-directional monomolecular reactionsJ R Soc Interface2014112014010810.1098/rsif.2014.0108
– reference: BarrioMBurrageKLeierATianTOscillatory regulation of hes1: discrete stochastic delay modelling and simulationPLoS Comput Biol20062e11710.1371/journal.pcbi.0020117
– reference: WangJLefrancMThommenQStochastic oscillations induced by intrinsic fluctuations in a self-repressing geneBiophys J2014107102403241610.1016/j.bpj.2014.09.042
– reference: PopovicNMarrCSwainPSA geometric analysis of fast-slow models for stochastic gene expressionJ Math Biol20167287122343787810.1007/s00285-015-0876-11338.34105
– reference: ThattaiMvan OudenaardenAIntrinsic noise in gene regulatory networksProc Natl Acad Sci USA20019815158859810.1073/pnas.151588598
– volume: 2
  start-page: e117
  year: 2006
  ident: 438_CR4
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020117
– volume: 8
  start-page: e79345
  year: 2013
  ident: 438_CR37
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0079345
– volume: 84
  start-page: 021128
  year: 2011
  ident: 438_CR32
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.84.021128
– volume: 408
  start-page: 222
  year: 2016
  ident: 438_CR27
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.08.018
– volume: 10
  start-page: 194
  year: 2011
  ident: 438_CR55
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2011.2168826
– volume: 12
  start-page: 002
  issue: 055
  year: 2015
  ident: 438_CR58
  publication-title: Phys Biol
– volume: 78
  start-page: 110
  year: 2016
  ident: 438_CR26
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-015-0131-3
– volume: 329
  start-page: 533
  year: 2010
  ident: 438_CR62
  publication-title: Science
  doi: 10.1126/science.1188308
– volume: 336
  start-page: 183
  year: 2012
  ident: 438_CR40
  publication-title: Science
  doi: 10.1126/science.1216379
– volume: 78
  start-page: 617
  year: 2016
  ident: 438_CR14
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-016-0149-1
– volume: 94
  start-page: 032401
  year: 2016
  ident: 438_CR28
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.94.032401
– volume: 104
  start-page: 1783
  year: 2013
  ident: 438_CR30
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2013.02.027
– volume: 104
  start-page: 7402
  issue: 18
  year: 2007
  ident: 438_CR53
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0610468104
– volume: 14
  start-page: 20160833
  year: 2017
  ident: 438_CR16
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2016.0833
– year: 2017
  ident: 438_CR17
  publication-title: J Math Biol
  doi: 10.1007/s00285-017-1116-7
– volume: 107
  start-page: 22096
  year: 2010
  ident: 438_CR43
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1008965107
– volume: 10
  start-page: e0120555
  year: 2015
  ident: 438_CR9
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0120555
– volume: 8
  start-page: 546
  year: 2016
  ident: 438_CR51
  publication-title: Integr Biol
  doi: 10.1039/C5IB00230C
– volume: 13
  start-page: 2475
  year: 2003
  ident: 438_CR18
  publication-title: Genome Res
  doi: 10.1101/gr.1196503
– volume: 22
  start-page: 403
  year: 1976
  ident: 438_CR21
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(76)90041-3
– volume: 113
  start-page: 268105
  year: 2014
  ident: 438_CR31
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.113.268105
– volume: 2
  start-page: 6
  year: 2008
  ident: 438_CR59
  publication-title: Bmc Syst Biol
  doi: 10.1186/1752-0509-2-6
– volume: 20
  start-page: 202
  year: 1968
  ident: 438_CR23
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(68)90189-6
– volume: 97
  start-page: 168302
  year: 2006
  ident: 438_CR20
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.97.168302
– volume: 109
  start-page: 17454
  year: 2012
  ident: 438_CR15
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1213530109
– volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
  year: 1972
  ident: 438_CR1
– volume: 94
  start-page: 814
  year: 1997
  ident: 438_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.3.814
– volume: 55
  start-page: 508
  year: 2017
  ident: 438_CR65
  publication-title: Chin. J Phys
  doi: 10.1016/j.cjph.2016.12.006
– volume: 11
  start-page: 20140108
  year: 2014
  ident: 438_CR33
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2014.0108
– volume: 96
  start-page: 4013
  year: 2009
  ident: 438_CR56
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2009.02.064
– volume: 13
  start-page: 1409
  year: 2003
  ident: 438_CR39
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00494-9
– volume: 140
  start-page: 174107
  year: 2014
  ident: 438_CR12
  publication-title: J Chem Phys
  doi: 10.1063/1.4871694
– volume: 4
  start-page: 1864
  year: 2013
  ident: 438_CR24
  publication-title: Nat Commun
  doi: 10.1038/ncomms2867
– volume-title: Perturbation methods
  year: 1991
  ident: 438_CR25
  doi: 10.1017/CBO9781139172189
– volume: 31
  start-page: 69
  year: 2002
  ident: 438_CR45
  publication-title: Nat Genet
  doi: 10.1038/ng869
– volume: 422
  start-page: 633
  year: 2003
  ident: 438_CR8
  publication-title: Nature
  doi: 10.1038/nature01546
– volume-title: Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics
  year: 1996
  ident: 438_CR3
  doi: 10.1017/CBO9781107050242
– volume: 123
  start-page: 1025
  year: 2005
  ident: 438_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2005.09.031
– volume-title: Mathematical biology: I introduction
  year: 2003
  ident: 438_CR41
  doi: 10.1007/b98869
– volume: 84
  start-page: 021928
  year: 2011
  ident: 438_CR47
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.84.021928
– volume: 405
  start-page: 590
  year: 2000
  ident: 438_CR5
  publication-title: Nature
  doi: 10.1038/35014651
– volume: 19
  start-page: 369
  year: 2008
  ident: 438_CR54
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2008.06.011
– volume: 91
  start-page: 062119
  issue: 6
  year: 2015
  ident: 438_CR57
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.91.062119
– volume: 74
  start-page: 1483
  year: 2017
  ident: 438_CR10
  publication-title: J Math Biol
  doi: 10.1007/s00285-016-1059-4
– volume: 91
  start-page: 012704
  year: 2015
  ident: 438_CR44
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.91.012704
– volume: 323
  start-page: 785
  year: 2002
  ident: 438_CR50
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00994-4
– volume: 78
  start-page: 1640
  year: 2016
  ident: 438_CR34
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-016-0178-9
– volume: 98
  start-page: 151588598
  year: 2001
  ident: 438_CR63
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.151588598
– volume-title: Molecular biology of the cell
  year: 2002
  ident: 438_CR2
– volume: 93
  start-page: 022409
  year: 2016
  ident: 438_CR35
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.93.022409
– volume: 421
  start-page: 51
  year: 2017
  ident: 438_CR46
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2017.03.017
– volume-title: Theory and applications of stochastic processes: an analytical approach
  year: 2009
  ident: 438_CR52
– volume: 14
  start-page: 035002
  year: 2017
  ident: 438_CR29
  publication-title: Phys Biol
  doi: 10.1088/1478-3975/aa6e5a
– volume: 297
  start-page: 1183
  year: 2002
  ident: 438_CR19
  publication-title: Science
  doi: 10.1126/science.1070919
– volume: 24
  start-page: 243
  year: 1981
  ident: 438_CR66
  publication-title: Cell
  doi: 10.1016/0092-8674(81)90520-1
– volume: 115
  start-page: 208101
  year: 2015
  ident: 438_CR7
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.115.208101
– volume: 75
  start-page: 351
  year: 2013
  ident: 438_CR11
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-013-9811-z
– volume: 344
  start-page: 965
  year: 2004
  ident: 438_CR61
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2004.09.073
– volume: 440
  start-page: 358
  year: 2006
  ident: 438_CR13
  publication-title: Nature
  doi: 10.1038/nature04599
– ident: 438_CR42
  doi: 10.1088/1751-8113/48/18/185001
– volume: 92
  start-page: 062717
  year: 2015
  ident: 438_CR49
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.92.062717
– volume: 2016
  start-page: 113501
  year: 2016
  ident: 438_CR6
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/2016/11/113501
– volume: 72
  start-page: 87
  year: 2016
  ident: 438_CR48
  publication-title: J Math Biol
  doi: 10.1007/s00285-015-0876-1
– volume: 332
  start-page: 472
  year: 2011
  ident: 438_CR60
  publication-title: Science
  doi: 10.1126/science.1198817
– volume: 107
  start-page: 2403
  issue: 10
  year: 2014
  ident: 438_CR64
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2014.09.042
– volume: 13
  start-page: 20150772
  year: 2016
  ident: 438_CR36
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2015.0772
SSID ssj0007939
Score 2.2948945
Snippet Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1871
SubjectTerms Algorithms
Animals
Bursting strength
Cell Biology
Coefficient of variation
Computer Simulation
Feedback
Feedback, Physiological
Gene Expression
Humans
Life Sciences
Load
Markov Chains
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Models, Genetic
Negative feedback
Original Article
Protein biosynthesis
Protein Biosynthesis - genetics
Proteins
Regulatory mechanisms (biology)
Single-Cell Analysis
Stochastic Processes
Stochasticity
Variation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFH9oq2APba0f3VplBE9KYDLJZndOpS276MFQikJvYWbyUpaWZN1sxfz3vpdMskixlx4CgUwmQ95n5r38fgCfolAVMinioNCRDGInMZhahQEqzENjchxb15JNTNJ0enWlL_yGW-3bKnuf2DrqvHK8R04f6aSZMTlcebL8FTBrFFdXPYXGU9hmpDLS8-2zWXpxOfhi0r4uAdZk9xS8-rpm-_Nca-wypCOmk-bfyHQv3bxXKm0j0HzvsWvfh12fe4rTTllewhMsD-B5x0bZHMDO9wHCtX4F37gDRJxX1RJXnmJCLEqR4nULFS7mFPascTeCZCNOuS-9aERaLepGMJS1mP3xLbbla_g5n_04_xp43oXARRO1DiyiszguXKKRaYXyIkmc1E7HNo-UKSI9NYm0hqHUEFUeFcbJnJnFQisNuZA3sFVWJR6CyFElmibCsUFKfaTF0MRWaxuzuSfJCGT_zjPnQcmZG-M228Aps5gyElPGYsqaEXwebll2iBwPDT7uJZJ546yzjThG8HG4TGbFtRJTYnXXjgm582BCY952CjA8TTGiECWKI_jSa8Rm8v8u5ejhpbyDF6rVRe4EPoat9eoO38Mz93u9qFcfvF7_BUBt_jo
  priority: 102
  providerName: ProQuest
Title High Cooperativity in Negative Feedback can Amplify Noisy Gene Expression
URI https://link.springer.com/article/10.1007/s11538-018-0438-y
https://www.ncbi.nlm.nih.gov/pubmed/29696600
https://www.proquest.com/docview/2030543030
https://www.proquest.com/docview/2031420870
Volume 80
WOSCitedRecordID wos000435403200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9RADA_encL54Mfp6eq5jOCTUphOv3Yez2MXRa4snsriS5mZprIo7bHdE_vfm_RrkVNBHxpamk5LMpmkJPMLwIvAV4WMi9ArdCC90En0Zlahhwpz35gcI-vaZhNJms5WK73s93HXQ7X7kJJsV-rdZrfWOKVPR0gnzR4cRAw2w7_oF5_G5ZcmXBfzajJ18ldDKvN3Q_zqjK5FmNeyo63TWdz9r8-9B3f6GFOcdpPiPtzA8ghudV0nmyO4fT5CtdYP4C1XeoizqrrETd9KQqxLkeKXFhJcLMi9WeO-CtKBOOX686IRabWuG8GQ1WL-oy-lLR_Cx8X8w9kbr--v4LkgUVvPIjqLUeFijdw-KC_i2EntdGjzQJki0DMTS2sYMg1R5UFhnMy5g5hvpaGl4hj2y6rExyByVLGmgTAySCGOtOib0GptQzbrOJ6AHASduR58nHtgfMt2sMksr4zklbG8smYCL8dHLjvkjb8xnwzay3ojrDPFi1lIPlpO4Pl4m8yHcyKmxOqq5fG5wiAhnked1se3KUYOooBwAq8GFe8G_-OnPPkn7qdwqNo5wgXAJ7C_3VzhM7jpvm_X9WYKe8kqaelsCgev5-nyPV29Szyi52rJNOnoBdFl9Hna2sJPWAX7gg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgIOPMproYCR4FIUyXGy2fUBoap01VXbVQ9F6i3YzgStQMmy2QL5U_xGZpzHClX01gOHSJHiOE78-fM4M54P4E0UqlwmeRzkOpJB7CQGY6swQIVZaEyGQ-u82MRoNhufnemTDfjd7YXhsMqOEz1RZ6Xjf-S0SCdkxkS48sPie8CqUexd7SQ0GlgcYv2TlmzV--lH6t-3Sk32T_cOglZVIHDRSK0Ci-gsDnOXaGTRnCxPEie107HNImXySI9NIq3hRGGIKoty42TGulmhlYYGCNV7Da6TGaGkDxU86ZmfsN6Y25pYhqbKzovqt-p5apEhHTGd1H_PgxeM2wuOWT_fTe79b1_qPtxtLWux2wyFB7CBxRbcbLQ26y24c9wnqK0ewpTjW8ReWS5w2QpoiHkhZvjFJ0IXE5rUrXFfBSFP7HLUfV6LWTmvasGJusX-rzaAuHgEn67krR7DZlEW-BREhirRVBEODZJhJy2GJrZa25jJLEkGILs-Tl2bcp2VP76l62TRDIuUYJEyLNJ6ADv9LYsm38hlhbc7BKQt9VTpuvsH8Lq_TKTBniBTYHnuy4QcVzGiMk8awPVPU5wviczgAbzrELiu_J9NeXZ5U17BrYPT46P0aDo7fA63lR8HHPO8DZur5Tm-gBvux2peLV_6ESXg81UD8w9C7F3I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5stVIfrG21nl7rCj5ZQjebXO72sdQ7LNpwqC19C7ubWTmU5LhcS_Pfu5Nfh5wVxIdAIJPNMjuzM2Fmvw_gXeALyyMbelYG3AsNR2-kBXooMPWVSnGgTUU2MYzj0fW1nDY8p0Xb7d6WJOszDYTSlC1P5qk9WR18qxyV--4K3U25AQ9D9yNDPV1fvl51W7Ezvjr_lc7tXexqy5p_GuL3wLSWba5VSqsANNn576k_g6dN7slOa2PZhQeY7cFWzUZZ7sGTiw7CtdiHc-oAYWd5PsdFQzHBZhmL8XsFFc4mLuxpZX4wtzbslPrSbcnifFaUjKCs2fiuabHNnsPlZPzt7KPX8C54JhiKpacRjcaBNZFEohVKbRQZLo0MdRoIZQM5UhHXiqDUEEUaWGV4SsxivubKbSEvYDPLM3wJLEURSTcQDhS61Idr9FWopdQhuXsU9YC3Sk9MA0pO3Bg_kxWcMukrcfpKSF9J2YP33SvzGpHjb8L9diWTxjmLRNAmF7rYzXvwtnvs3IpqJSrD_KaS8anzYOhkDmoL6L4mCFHIJYo9OG6XezX4vVN59U_Sb-Dx9MMk-Xwef3oN26IyF-oR7sPmcnGDh_DI3C5nxeKoMvhfHi7_NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Cooperativity+in+Negative+Feedback+can+Amplify+Noisy+Gene+Expression&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Bokes%2C+Pavol&rft.au=Lin%2C+Yen+Ting&rft.au=Singh%2C+Abhyudai&rft.date=2018-07-01&rft.eissn=1522-9602&rft.volume=80&rft.issue=7&rft.spage=1871&rft_id=info:doi/10.1007%2Fs11538-018-0438-y&rft_id=info%3Apmid%2F29696600&rft.externalDocID=29696600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon