A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images

Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of medical systems Ročník 43; číslo 9; s. 299 - 9
Hlavní autori: Raghavendra, U., Gudigar, Anjan, Bhandary, Sulatha V., Rao, Tejaswi N., Ciaccio, Edward J., Acharya, U. Rajendra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2019
Springer Nature B.V
Predmet:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F  −  measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0148-5598
1573-689X
1573-689X
DOI:10.1007/s10916-019-1427-x