Sampled-data synchronization control for chaotic neural networks subject to actuator saturation
In this paper, the sampled-data control is applied to synchronize chaotic neural networks subject to actuator saturation. By employing a time-dependent Lyapunov functional that captures the characteristic information of actual sampling pattern, we derive a local stability condition for the synchroni...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 260; s. 25 - 31 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
18.10.2017
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, the sampled-data control is applied to synchronize chaotic neural networks subject to actuator saturation. By employing a time-dependent Lyapunov functional that captures the characteristic information of actual sampling pattern, we derive a local stability condition for the synchronization error systems. By this condition, we design a sampled-data controller to regionally synchronize the drive neural networks and response neural networks subject to actuator saturation. Moreover, an optimization method is given to design the desired sampled-data controller such that the set of admissible initial conditions is maximized. A numerical example is given to demonstrate the effectiveness and merits of the proposed design technique. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2017.02.063 |