Sampled-data synchronization control for chaotic neural networks subject to actuator saturation

In this paper, the sampled-data control is applied to synchronize chaotic neural networks subject to actuator saturation. By employing a time-dependent Lyapunov functional that captures the characteristic information of actual sampling pattern, we derive a local stability condition for the synchroni...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 260; s. 25 - 31
Hlavní autori: Zeng, Hong-Bing, Teo, Kok Lay, He, Yong, Xu, Honglei, Wang, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 18.10.2017
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, the sampled-data control is applied to synchronize chaotic neural networks subject to actuator saturation. By employing a time-dependent Lyapunov functional that captures the characteristic information of actual sampling pattern, we derive a local stability condition for the synchronization error systems. By this condition, we design a sampled-data controller to regionally synchronize the drive neural networks and response neural networks subject to actuator saturation. Moreover, an optimization method is given to design the desired sampled-data controller such that the set of admissible initial conditions is maximized. A numerical example is given to demonstrate the effectiveness and merits of the proposed design technique.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2017.02.063