Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River

DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) Vol. 266; no. Pt 2; p. 115198
Main Authors: Kim, Minkyung, Lee, Jaebok, Yang, Dongwoo, Park, Hye Yoon, Park, Woojun
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2020
Subjects:
ISSN:0269-7491, 1873-6424, 1873-6424
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. The bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Flavobacterium species in phylum Bacteroidetes was dominant in the cyanobacterial phycosphere in our culture-independent analysis and Brevundimonas was the most dominant species in the 1-year subcultured sample. Several isolates of Brevundimonas, Pseudomonas, and Curvibacter species could encourage the growth of M. aeruginosa. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. [Display omitted] •Culture-independent analyses in cyanobacterial blooms were performed for 2 years.•Microcystis, Flavobacterium, and Pseudomonas were the major genus.•Brevundimonas was the predominant genus in subcultured cyanobacterial samples.•Brevundimonas species could promote the growth of M. aeruginosa.•Nitrogen addition was the most positive effect on the growth of M. aeruginosa.
AbstractList DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.
DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. The bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Flavobacterium species in phylum Bacteroidetes was dominant in the cyanobacterial phycosphere in our culture-independent analysis and Brevundimonas was the most dominant species in the 1-year subcultured sample. Several isolates of Brevundimonas, Pseudomonas, and Curvibacter species could encourage the growth of M. aeruginosa. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. [Display omitted] •Culture-independent analyses in cyanobacterial blooms were performed for 2 years.•Microcystis, Flavobacterium, and Pseudomonas were the major genus.•Brevundimonas was the predominant genus in subcultured cyanobacterial samples.•Brevundimonas species could promote the growth of M. aeruginosa.•Nitrogen addition was the most positive effect on the growth of M. aeruginosa.
DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.
ArticleNumber 115198
Author Park, Woojun
Yang, Dongwoo
Kim, Minkyung
Lee, Jaebok
Park, Hye Yoon
Author_xml – sequence: 1
  givenname: Minkyung
  surname: Kim
  fullname: Kim, Minkyung
  organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
– sequence: 2
  givenname: Jaebok
  surname: Lee
  fullname: Lee, Jaebok
  organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
– sequence: 3
  givenname: Dongwoo
  surname: Yang
  fullname: Yang, Dongwoo
  organization: Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
– sequence: 4
  givenname: Hye Yoon
  surname: Park
  fullname: Park, Hye Yoon
  organization: National Institute of Biological Resources, Incheon, 22689, Republic of Korea
– sequence: 5
  givenname: Woojun
  surname: Park
  fullname: Park, Woojun
  email: wpark@korea.ac.kr
  organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
BookMark eNqFkc1rGzEQxUVJoU7a_6AHHXtZVytpZbmHQgnNBwQC_TiLsXaWjNmVXEl28X8fuRsI9JCcZph57x1-75ydhRiQsY-tWLaiNZ-3SwyHXRyXUsh6art2bd-wRWtXqjFa6jO2ENKsm5Vet-_Yec5bIYRWSi0Y_kTIMcDI-2OAiXzmceDlAfkGfMFE9ePjNO0DFcLMIefoCQr2_C-VB-6PEOKzdDPGOGVO4V_EDQT-gw6Y3rO3A4wZPzzNC_b76vuvy5vm7v769vLbXePVSpYGtJQbidpaL6BuwoJRuLZ2UH1vpbfaiF4JZYw2Q-c3whs0A1QGAg2iVhfs05y7S_HPHnNxE2WP4wgB4z472XUVkdbSvi6t3LSyspNV-mWW-hRzTjg4TwUKxVAS0Oha4U41uK2ba3CnGtxcQzXr_8y7RBOk42u2r7MNK64DYXLZEwaPPSX0xfWRXg54BFdnpps
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_173028
crossref_primary_10_1186_s42649_023_00085_6
crossref_primary_10_1111_1462_2920_15692
crossref_primary_10_4014_jmb_2306_06017
crossref_primary_10_1016_j_envres_2025_120754
crossref_primary_10_11614_KSL_2024_57_4_231
crossref_primary_10_1016_j_envpol_2021_118057
crossref_primary_10_1016_j_scitotenv_2023_165888
crossref_primary_10_1177_11769343221074688
crossref_primary_10_1007_s11356_021_15627_2
crossref_primary_10_1016_j_envpol_2022_119947
crossref_primary_10_1128_msystems_00310_25
crossref_primary_10_4014_jmb_2405_05026
crossref_primary_10_1016_j_watres_2024_122539
crossref_primary_10_1016_j_envres_2021_111455
crossref_primary_10_1080_02705060_2023_2205874
crossref_primary_10_1016_j_watres_2025_123683
crossref_primary_10_1099_ijsem_0_005230
crossref_primary_10_3390_microorganisms10112150
crossref_primary_10_3390_toxins15090582
crossref_primary_10_1016_j_scitotenv_2021_149040
crossref_primary_10_1111_jpy_13412
crossref_primary_10_1016_j_jenvman_2024_122128
crossref_primary_10_1016_j_hal_2024_102680
crossref_primary_10_1093_femsec_fiae048
crossref_primary_10_1007_s12275_023_00082_0
crossref_primary_10_1016_j_biortech_2022_127610
crossref_primary_10_1128_aem_02112_22
crossref_primary_10_1099_ijsem_0_004845
crossref_primary_10_3390_d15090946
crossref_primary_10_1099_ijsem_0_005185
crossref_primary_10_1007_s00343_022_1393_x
crossref_primary_10_1093_ismeco_ycae170
crossref_primary_10_1007_s12275_024_00172_7
crossref_primary_10_1038_s41598_022_11995_y
crossref_primary_10_1016_j_marpolbul_2023_115336
crossref_primary_10_3389_fmicb_2023_1295193
crossref_primary_10_3390_w17010079
crossref_primary_10_1016_j_watres_2021_117784
crossref_primary_10_1038_s41598_022_17788_7
crossref_primary_10_1016_j_scitotenv_2025_179481
crossref_primary_10_1007_s12275_024_00115_2
crossref_primary_10_1111_1758_2229_70029
crossref_primary_10_1016_j_hal_2024_102627
crossref_primary_10_1016_j_watres_2025_124310
crossref_primary_10_1016_j_scitotenv_2023_166467
crossref_primary_10_1007_s12223_023_01108_1
crossref_primary_10_1016_j_envpol_2021_116567
crossref_primary_10_1016_j_jhazmat_2023_130932
crossref_primary_10_3390_toxins13010025
Cites_doi 10.1016/j.scitotenv.2013.11.097
10.1016/j.hal.2019.02.002
10.3390/w11061163
10.1186/s12866-019-1585-5
10.1002/rra.760
10.1016/j.ecoenv.2008.05.014
10.1016/j.envpol.2016.06.055
10.1016/j.jhazmat.2015.08.041
10.1128/JB.185.9.2774-2785.2003
10.1016/j.envpol.2011.06.042
10.1128/JB.181.13.4089-4097.1999
10.1016/j.bej.2015.07.013
10.1111/j.1365-294X.2011.05362.x
10.2216/i0031-8884-35-6S-83.1
10.1080/00288330.2011.570769
10.1016/j.ibiod.2009.10.008
10.1038/s41598-019-56882-1
10.2134/jeq1998.00472425002700020004x
10.1002/tox.20103
10.1016/j.taap.2004.02.016
10.3390/toxins7030900
10.1016/j.enzmictec.2012.07.013
10.1371/journal.pone.0140614
10.1111/j.1469-8137.1990.tb00388.x
10.1016/0043-1354(87)90072-8
10.2478/v10102-009-0006-2
10.1128/AEM.02634-16
10.1590/S1415-47572008000100019
10.1016/j.gene.2006.04.017
10.1016/S0146-6380(96)00113-1
10.1073/pnas.0805108105
10.1016/j.hal.2011.10.027
10.15406/bij.2020.04.00159
10.1016/j.jhazmat.2019.121312
10.1371/journal.pone.0155757
10.1186/s12302-018-0152-2
10.3389/fmicb.2018.00424
10.1073/pnas.1307701110
10.1051/limn/2011013
10.1021/acs.est.5b03931
10.1128/AEM.67.6.2810-2818.2001
10.1007/s10201-016-0494-7
10.1021/ja207172s
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.envpol.2020.115198
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 10_1016_j_envpol_2020_115198
S0269749120315335
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c372t-a422b2e488c0a2b208a63e988f3dd82c8460d3036646f5cb0c6e6fa1010e6ee43
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571407900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-7491
1873-6424
IngestDate Thu Oct 02 08:50:08 EDT 2025
Sun Sep 28 08:19:26 EDT 2025
Tue Nov 18 21:52:05 EST 2025
Sat Nov 29 07:23:58 EST 2025
Tue Dec 03 03:45:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Microcystin
Culturable bacteria
Water quality variation
Terminal-restriction fragment length polymorphism
Bacterial community
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-a422b2e488c0a2b208a63e988f3dd82c8460d3036646f5cb0c6e6fa1010e6ee43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2424438252
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552024428
proquest_miscellaneous_2424438252
crossref_citationtrail_10_1016_j_envpol_2020_115198
crossref_primary_10_1016_j_envpol_2020_115198
elsevier_sciencedirect_doi_10_1016_j_envpol_2020_115198
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Environmental pollution (1987)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Xie, Liu, Chen, Wen (bib54) 2009; 72
Mbukwa, Msagati, Mamba, Boussiba, Wepener, Leu, Kaye (bib31) 2015
Lee, Kim, Jeong, Park, Jeon, Park (bib25) 2020; 384
Schindler, Hecky, Findlay, Stainton, Parker, Paterson, Beaty, Lyng, Kaisan (bib40) 2008; 105
Abed (bib1) 2010; 62
Correll (bib12) 1998; 27
Cai, Jiang, Krumholz, Yang (bib7) 2014; 9
Marques, Marchaison, Gardan, Samson (bib30) 2008; 31
Ouahid, Pérez-Silva, del Campo (bib36) 2005; 20
Tao, Rouvière, Cheng (bib47) 2006; 379
Harada, Tsuji, Watanabe, Kondo (bib18) 1996; 35
Harke, Davis, Watson, Gobler (bib19) 2015; 50
Lorenzi, Chia, Lopes, Silva, Edwards, do Carmo Bittencourt-Oliveira (bib27) 2019; 57
Li, Wu, Tang, Su, Li, Zhang, Wang, Zhang, Liu, Hecker, Giesy, Yu (bib26) 2018; 30
Song, Coggins, Reichwaldt, Ghadouani (bib44) 2015; 7
Shan, Song, Chen, Li, Liu, Wu, Jia, Zhou, Peng (bib43) 2019; 84
O’Neil, Davis, Burford, Gobler (bib34) 2012; 14
Seale, Boraas, Warren (bib41) 1987; 21
Yamamoto, Shiah, Chen (bib53) 2011; 47
Wetzel (bib52) 1983
Chen, Chen, Zhang, Xie (bib8) 2016; 301
Saviola (bib39) 2018; 6
Bassem (bib3) 2020; 4
Horne, Goldman (bib21) 1994
Choix, de-Bashan, Bashan (bib9) 2012; 51
Feng, Liu, Wu, Ma, Li, Xu, Li, Feng (bib14) 2016; 54
Flombaum, Gallegos, Gordillo, Rincón, Zabala, Jiao, Karl, Li, Lomas, Veneziano (bib15) 2013; 110
Hanada, Kawase, Hiraishi, Takaichi, Matsuura, Shimada, Nagashima (bib17) 1997; 47
Cook, Li, Cai, Krumholz, Hambright, Paerl, Steffen, Wilson, Burford, Grossart (bib11) 2019; 65
Berg, Sutula (bib4) 2015
Codd, Morrison, Metcalf (bib10) 2005; 203
Hu, Yang, Chen, Hou, Ma, Yu (bib22) 2014; 472
Zinger, Gobet, Pommier (bib55) 2012; 21
Mikalsen, Boison, Skulberg, Fastner, Davies, Gabrielsen, Rudi, Jakobsen (bib32) 2003; 185
(bib37) 2006
Bouhaddada, Nélieu, Nasri, Delarue, Bouaïcha (bib6) 2016; 216
Guedes, Rachid, Rangel, Silva, Bisch, Azevedo, Pacheco (bib16) 2018; 9
Wang, Zhao, Zeng, Xu, Huang, Jiao, Guo (bib50) 2019; 19
Neilan, Dittmann, Rouhiainen, Bass, Schaub, Sivonen, Börner (bib33) 1999; 181
Sato, Amano, Machida, Imazeki (bib38) 2017; 18
Weller (bib51) 2011; 45
Heo, Cho, Ramanan, Oh, Kim (bib20) 2015; 103
Tang, Robson, Dilworth (bib45) 1990; 114
Tillett, Parker, Neilan (bib48) 2001; 67
Louati, Pascault, Debroas, Bernard, Humbert, Leloup (bib28) 2015; 10
Versalovic, Schneider, de Bruijn, Lupski (bib49) 1994; 5
Seyedsayamdost, Carr, Kolter, Clardy (bib42) 2011; 133
Kim, Chung, Park, Cho, Lee (bib23) 2019; 11
Maier, Kingston, Clark, Frazer, Sanderson (bib29) 2004; 20
Tang, Chen, Wang, Liu, Zhang, Gao, Pei, Zheng (bib46) 2011; 159
Afi, Metzger, Largeau, Connan, Berkaloff, Rousseau (bib2) 1996; 25
Bláha, Babica, Maršálek (bib5) 2009; 2
Díez, Nylander, Ininbergs, Dupont, Allen, Yooseph, Rusch, Bergman (bib13) 2016; 11
Kim, Shin, Lee, Park, Park (bib24) 2019; 9
Osman, Beier, Grabherr, Bertilsson (bib35) 2017; 83
Zhang (10.1016/j.envpol.2020.115198_bib54) 2009; 72
Heo (10.1016/j.envpol.2020.115198_bib20) 2015; 103
Hu (10.1016/j.envpol.2020.115198_bib22) 2014; 472
Sato (10.1016/j.envpol.2020.115198_bib38) 2017; 18
Marques (10.1016/j.envpol.2020.115198_bib30) 2008; 31
Berg (10.1016/j.envpol.2020.115198_bib4) 2015
Flombaum (10.1016/j.envpol.2020.115198_bib15) 2013; 110
Mikalsen (10.1016/j.envpol.2020.115198_bib32) 2003; 185
Abed (10.1016/j.envpol.2020.115198_bib1) 2010; 62
(10.1016/j.envpol.2020.115198_bib37) 2006
Ouahid (10.1016/j.envpol.2020.115198_bib36) 2005; 20
Seyedsayamdost (10.1016/j.envpol.2020.115198_bib42) 2011; 133
Bouhaddada (10.1016/j.envpol.2020.115198_bib6) 2016; 216
Saviola (10.1016/j.envpol.2020.115198_bib39) 2018; 6
Shan (10.1016/j.envpol.2020.115198_bib43) 2019; 84
Tillett (10.1016/j.envpol.2020.115198_bib48) 2001; 67
Weller (10.1016/j.envpol.2020.115198_bib51) 2011; 45
Yamamoto (10.1016/j.envpol.2020.115198_bib53) 2011; 47
Wang (10.1016/j.envpol.2020.115198_bib50) 2019; 19
Cai (10.1016/j.envpol.2020.115198_bib7) 2014; 9
Kim (10.1016/j.envpol.2020.115198_bib24) 2019; 9
Feng (10.1016/j.envpol.2020.115198_bib14) 2016; 54
Cook (10.1016/j.envpol.2020.115198_bib11) 2019; 65
Lorenzi (10.1016/j.envpol.2020.115198_bib27) 2019; 57
Afi (10.1016/j.envpol.2020.115198_bib2) 1996; 25
Harada (10.1016/j.envpol.2020.115198_bib18) 1996; 35
Neilan (10.1016/j.envpol.2020.115198_bib33) 1999; 181
O’Neil (10.1016/j.envpol.2020.115198_bib34) 2012; 14
Tang (10.1016/j.envpol.2020.115198_bib46) 2011; 159
Guedes (10.1016/j.envpol.2020.115198_bib16) 2018; 9
Tao (10.1016/j.envpol.2020.115198_bib47) 2006; 379
Lee (10.1016/j.envpol.2020.115198_bib25) 2020; 384
Zinger (10.1016/j.envpol.2020.115198_bib55) 2012; 21
Díez (10.1016/j.envpol.2020.115198_bib13) 2016; 11
Li (10.1016/j.envpol.2020.115198_bib26) 2018; 30
Mbukwa (10.1016/j.envpol.2020.115198_bib31) 2015
Seale (10.1016/j.envpol.2020.115198_bib41) 1987; 21
Correll (10.1016/j.envpol.2020.115198_bib12) 1998; 27
Osman (10.1016/j.envpol.2020.115198_bib35) 2017; 83
Hanada (10.1016/j.envpol.2020.115198_bib17) 1997; 47
Schindler (10.1016/j.envpol.2020.115198_bib40) 2008; 105
Tang (10.1016/j.envpol.2020.115198_bib45) 1990; 114
Louati (10.1016/j.envpol.2020.115198_bib28) 2015; 10
Chen (10.1016/j.envpol.2020.115198_bib8) 2016; 301
Harke (10.1016/j.envpol.2020.115198_bib19) 2015; 50
Wetzel (10.1016/j.envpol.2020.115198_bib52) 1983
Bassem (10.1016/j.envpol.2020.115198_bib3) 2020; 4
Song (10.1016/j.envpol.2020.115198_bib44) 2015; 7
Bláha (10.1016/j.envpol.2020.115198_bib5) 2009; 2
Versalovic (10.1016/j.envpol.2020.115198_bib49) 1994; 5
Kim (10.1016/j.envpol.2020.115198_bib23) 2019; 11
Codd (10.1016/j.envpol.2020.115198_bib10) 2005; 203
Choix (10.1016/j.envpol.2020.115198_bib9) 2012; 51
Maier (10.1016/j.envpol.2020.115198_bib29) 2004; 20
Horne (10.1016/j.envpol.2020.115198_bib21) 1994
References_xml – volume: 83
  year: 2017
  ident: bib35
  article-title: Interactions of freshwater cyanobacteria with bacterial antagonists
  publication-title: Appl. Environ. Microbiol.
– volume: 57
  start-page: 450
  year: 2019
  end-page: 460
  ident: bib27
  article-title: Cyanobacterial biodiversity of semiarid public drinking water supply reservoirs assessed via next-generation DNA sequencing technology
  publication-title: J. Microbiol.
– volume: 14
  start-page: 313
  year: 2012
  end-page: 334
  ident: bib34
  article-title: The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change
  publication-title: Harmful Algae
– volume: 9
  year: 2014
  ident: bib7
  article-title: Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake
  publication-title: PLoS One
– volume: 27
  start-page: 261
  year: 1998
  end-page: 266
  ident: bib12
  article-title: The role of phosphorus in the eutrophication of receiving waters: A review
  publication-title: J. Environ. Qual.
– volume: 4
  start-page: 10
  year: 2020
  end-page: 16
  ident: bib3
  article-title: Water pollution and aquatic biodiversity
  publication-title: Biodivers. Int. J.
– volume: 21
  start-page: 625
  year: 1987
  end-page: 631
  ident: bib41
  article-title: Effects of sodium and phosphate on growth of cyanobacteria
  publication-title: Water Res.
– volume: 65
  start-page: S194
  year: 2019
  end-page: S207
  ident: bib11
  article-title: The global
  publication-title: Limnol. Oceanogr.
– year: 2015
  ident: bib31
  article-title: Toxic Microcystis novacekii T20-3 from Phakalane Ponds, Botswana: PCR amplifications of microcystin synthetase (mcy) genes, extraction and LC-ESI-MS identification of microcystins
  publication-title: J. Environ. Anal. Toxicol.
– year: 1983
  ident: bib52
  article-title: Limnology
– volume: 6
  start-page: 114
  year: 2018
  end-page: 115
  ident: bib39
  article-title: Pigments of pathogenic bacteria
  publication-title: J. Microbiol. Exp.
– volume: 133
  start-page: 18343
  year: 2011
  end-page: 18349
  ident: bib42
  article-title: Roseobacticides: Small molecule modulators of an algal-bacterial symbiosis
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1163
  year: 2019
  ident: bib23
  article-title: Analysis of environmental factors associated with cyanobacterial dominance after river weir installation
  publication-title: Water
– volume: 54
  start-page: 468
  year: 2016
  end-page: 476
  ident: bib14
  article-title: Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors
  publication-title: J. Microbiol.
– volume: 181
  start-page: 4089
  year: 1999
  end-page: 4097
  ident: bib33
  article-title: Nonribosomal peptide synthesis and toxigenicity of cyanobacteria
  publication-title: J. Bacteriol.
– volume: 2
  start-page: 36
  year: 2009
  end-page: 41
  ident: bib5
  article-title: Toxins produced in cyanobacterial water blooms – toxicity and risks
  publication-title: Interdiscip. Toxicol.
– volume: 203
  start-page: 264
  year: 2005
  end-page: 272
  ident: bib10
  article-title: Cyanobacterial toxins: Risk management for health protection
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 384
  start-page: 121312
  year: 2020
  ident: bib25
  article-title: Amentoflavone, a novel cyanobacterial killing agent from
  publication-title: J. Hazard. Mater.
– volume: 47
  start-page: 408
  year: 1997
  end-page: 413
  ident: bib17
  article-title: sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 21
  start-page: 1878
  year: 2012
  end-page: 1896
  ident: bib55
  article-title: Two decades of describing the unseen majority of aquatic microbial diversity
  publication-title: Mol. Ecol.
– volume: 105
  start-page: 11254
  year: 2008
  end-page: 11258
  ident: bib40
  article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 301
  start-page: 381
  year: 2016
  end-page: 399
  ident: bib8
  article-title: A review of reproductive toxicity of microcystins
  publication-title: J. Hazard. Mater.
– volume: 11
  year: 2016
  ident: bib13
  article-title: Metagenomic analysis of the Indian Ocean picocyanobacterial community: Structure, potential function and evolution
  publication-title: PLoS One
– volume: 35
  start-page: 83
  year: 1996
  end-page: 88
  ident: bib18
  article-title: Stability of microcystins from cyanobacteria—III. Effect of pH and temperature
  publication-title: Phycologia
– volume: 18
  start-page: 111
  year: 2017
  end-page: 119
  ident: bib38
  article-title: Colony formation of highly dispersed
  publication-title: Limnology
– volume: 216
  start-page: 836
  year: 2016
  end-page: 844
  ident: bib6
  article-title: High diversity of microcystins in a
  publication-title: Environ. Pollut.
– volume: 30
  start-page: 27
  year: 2018
  ident: bib26
  article-title: Factors associated with blooms of cyanobacteria in a large shallow lake, China
  publication-title: Environ. Sci. Eur.
– volume: 5
  start-page: 25
  year: 1994
  end-page: 40
  ident: bib49
  article-title: Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction
  publication-title: Methods Mol. Cell. Biol.
– year: 1994
  ident: bib21
  article-title: Limnology
– volume: 110
  start-page: 9824
  year: 2013
  end-page: 9829
  ident: bib15
  article-title: Present and future global distributions of the marine cyanobacteria
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 31
  start-page: 106
  year: 2008
  end-page: 115
  ident: bib30
  article-title: BOX-PCR-based identification of bacterial species belonging to
  publication-title: Genet. Mol. Biol.
– volume: 45
  start-page: 651
  year: 2011
  end-page: 664
  ident: bib51
  article-title: Detection, identification and toxigenicity of cyanobacteria in New Zealand lakes using PCR-based methods
  publication-title: New Zealand J. Mar. Freshwater Res.
– year: 2006
  ident: bib37
  article-title: R: a Language and Environment for Statistical Computing
– volume: 62
  start-page: 58
  year: 2010
  end-page: 64
  ident: bib1
  article-title: Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons
  publication-title: Int. Biodeter. Biodegr.
– volume: 67
  start-page: 2810
  year: 2001
  end-page: 2818
  ident: bib48
  article-title: Detection of toxigenicity by a probe for the microcystin synthetase A gene (
  publication-title: Appl. Environ. Microbiol.
– volume: 84
  start-page: 84
  year: 2019
  end-page: 94
  ident: bib43
  article-title: Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes
  publication-title: Harmful Algae
– volume: 20
  start-page: 235
  year: 2005
  end-page: 242
  ident: bib36
  article-title: Identification of potentially toxic environmental
  publication-title: Environ. Toxicol.
– volume: 19
  start-page: 207
  year: 2019
  ident: bib50
  article-title: Variations of bacterial community during the decomposition of
  publication-title: BMC Microbiol.
– volume: 47
  start-page: 167
  year: 2011
  end-page: 173
  ident: bib53
  article-title: Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds
  publication-title: Ann. Limnol. Int. J. Lim.
– volume: 20
  start-page: 459
  year: 2004
  end-page: 471
  ident: bib29
  article-title: Risk-based approach for assessing the effectiveness of flow management in controlling cyanobacterial blooms in rivers
  publication-title: River Res. Appl.
– volume: 9
  start-page: 20416
  year: 2019
  ident: bib24
  article-title: Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming
  publication-title: Sci. Rep.
– volume: 7
  start-page: 900
  year: 2015
  end-page: 918
  ident: bib44
  article-title: The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes
  publication-title: Toxins
– volume: 50
  start-page: 604
  year: 2015
  end-page: 615
  ident: bib19
  article-title: Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys
  publication-title: Environ. Sci. Technol.
– volume: 379
  start-page: 101
  year: 2006
  end-page: 108
  ident: bib47
  article-title: A carotenoid synthesis gene cluster from a non-marine
  publication-title: Gene
– volume: 25
  start-page: 117
  year: 1996
  end-page: 130
  ident: bib2
  article-title: Bacterial degradation of green microalgae: Incubation of
  publication-title: Org. Geochem.
– year: 2015
  ident: bib4
  article-title: Factors Affecting Growth of Cyanobacteria with Special Emphasis on the Sacramento-San Joaquin Delta. Southern California Coastal Water Research Project (SSCWRP) Technical Report 869
– volume: 10
  year: 2015
  ident: bib28
  article-title: Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus
  publication-title: PLoS One
– volume: 472
  start-page: 746
  year: 2014
  end-page: 756
  ident: bib22
  article-title: Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China
  publication-title: Sci. Total Environ.
– volume: 185
  start-page: 2774
  year: 2003
  end-page: 2785
  ident: bib32
  article-title: Natural variation in the microcystin synthetase operon
  publication-title: J. Bacteriol.
– volume: 103
  start-page: 193
  year: 2015
  end-page: 197
  ident: bib20
  article-title: PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO
  publication-title: Biochem. Eng. J.
– volume: 9
  start-page: 424
  year: 2018
  ident: bib16
  article-title: Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir
  publication-title: Front. Microbiol.
– volume: 159
  start-page: 3784
  year: 2011
  end-page: 3792
  ident: bib46
  article-title: The changes of nitric oxide production during the growth of
  publication-title: Environ. Pollut.
– volume: 51
  start-page: 294
  year: 2012
  end-page: 299
  ident: bib9
  article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized
  publication-title: Enzyme Microb. Technol.
– volume: 72
  start-page: 466
  year: 2009
  end-page: 472
  ident: bib54
  article-title: Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 114
  start-page: 173
  year: 1990
  end-page: 182
  ident: bib45
  article-title: The role of iron in nodulation and nitrogen fixation in
  publication-title: New Phytol.
– volume: 472
  start-page: 746
  year: 2014
  ident: 10.1016/j.envpol.2020.115198_bib22
  article-title: Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.11.097
– volume: 84
  start-page: 84
  year: 2019
  ident: 10.1016/j.envpol.2020.115198_bib43
  article-title: Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.02.002
– volume: 11
  start-page: 1163
  year: 2019
  ident: 10.1016/j.envpol.2020.115198_bib23
  article-title: Analysis of environmental factors associated with cyanobacterial dominance after river weir installation
  publication-title: Water
  doi: 10.3390/w11061163
– volume: 65
  start-page: S194
  year: 2019
  ident: 10.1016/j.envpol.2020.115198_bib11
  article-title: The global Microcystis interactome
  publication-title: Limnol. Oceanogr.
– volume: 19
  start-page: 207
  year: 2019
  ident: 10.1016/j.envpol.2020.115198_bib50
  article-title: Variations of bacterial community during the decomposition of Microcystis under different temperatures and biomass
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-019-1585-5
– volume: 20
  start-page: 459
  year: 2004
  ident: 10.1016/j.envpol.2020.115198_bib29
  article-title: Risk-based approach for assessing the effectiveness of flow management in controlling cyanobacterial blooms in rivers
  publication-title: River Res. Appl.
  doi: 10.1002/rra.760
– volume: 72
  start-page: 466
  year: 2009
  ident: 10.1016/j.envpol.2020.115198_bib54
  article-title: Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2008.05.014
– volume: 216
  start-page: 836
  year: 2016
  ident: 10.1016/j.envpol.2020.115198_bib6
  article-title: High diversity of microcystins in a Microcystis bloom from an Algerian lake
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.055
– volume: 301
  start-page: 381
  year: 2016
  ident: 10.1016/j.envpol.2020.115198_bib8
  article-title: A review of reproductive toxicity of microcystins
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.08.041
– volume: 185
  start-page: 2774
  year: 2003
  ident: 10.1016/j.envpol.2020.115198_bib32
  article-title: Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.9.2774-2785.2003
– volume: 159
  start-page: 3784
  year: 2011
  ident: 10.1016/j.envpol.2020.115198_bib46
  article-title: The changes of nitric oxide production during the growth of Microcystis aerugrinosa [sic]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.06.042
– volume: 54
  start-page: 468
  year: 2016
  ident: 10.1016/j.envpol.2020.115198_bib14
  article-title: Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors
  publication-title: J. Microbiol.
– volume: 181
  start-page: 4089
  year: 1999
  ident: 10.1016/j.envpol.2020.115198_bib33
  article-title: Nonribosomal peptide synthesis and toxigenicity of cyanobacteria
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.13.4089-4097.1999
– volume: 103
  start-page: 193
  year: 2015
  ident: 10.1016/j.envpol.2020.115198_bib20
  article-title: PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2015.07.013
– volume: 21
  start-page: 1878
  year: 2012
  ident: 10.1016/j.envpol.2020.115198_bib55
  article-title: Two decades of describing the unseen majority of aquatic microbial diversity
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2011.05362.x
– volume: 35
  start-page: 83
  year: 1996
  ident: 10.1016/j.envpol.2020.115198_bib18
  article-title: Stability of microcystins from cyanobacteria—III. Effect of pH and temperature
  publication-title: Phycologia
  doi: 10.2216/i0031-8884-35-6S-83.1
– volume: 45
  start-page: 651
  year: 2011
  ident: 10.1016/j.envpol.2020.115198_bib51
  article-title: Detection, identification and toxigenicity of cyanobacteria in New Zealand lakes using PCR-based methods
  publication-title: New Zealand J. Mar. Freshwater Res.
  doi: 10.1080/00288330.2011.570769
– volume: 62
  start-page: 58
  year: 2010
  ident: 10.1016/j.envpol.2020.115198_bib1
  article-title: Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons
  publication-title: Int. Biodeter. Biodegr.
  doi: 10.1016/j.ibiod.2009.10.008
– volume: 9
  start-page: 20416
  year: 2019
  ident: 10.1016/j.envpol.2020.115198_bib24
  article-title: Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56882-1
– volume: 6
  start-page: 114
  year: 2018
  ident: 10.1016/j.envpol.2020.115198_bib39
  article-title: Pigments of pathogenic bacteria
  publication-title: J. Microbiol. Exp.
– volume: 27
  start-page: 261
  year: 1998
  ident: 10.1016/j.envpol.2020.115198_bib12
  article-title: The role of phosphorus in the eutrophication of receiving waters: A review
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1998.00472425002700020004x
– volume: 20
  start-page: 235
  year: 2005
  ident: 10.1016/j.envpol.2020.115198_bib36
  article-title: Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.20103
– volume: 203
  start-page: 264
  year: 2005
  ident: 10.1016/j.envpol.2020.115198_bib10
  article-title: Cyanobacterial toxins: Risk management for health protection
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2004.02.016
– volume: 7
  start-page: 900
  year: 2015
  ident: 10.1016/j.envpol.2020.115198_bib44
  article-title: The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes
  publication-title: Toxins
  doi: 10.3390/toxins7030900
– volume: 57
  start-page: 450
  year: 2019
  ident: 10.1016/j.envpol.2020.115198_bib27
  article-title: Cyanobacterial biodiversity of semiarid public drinking water supply reservoirs assessed via next-generation DNA sequencing technology
  publication-title: J. Microbiol.
– volume: 51
  start-page: 294
  year: 2012
  ident: 10.1016/j.envpol.2020.115198_bib9
  article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2012.07.013
– volume: 10
  year: 2015
  ident: 10.1016/j.envpol.2020.115198_bib28
  article-title: Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140614
– volume: 114
  start-page: 173
  year: 1990
  ident: 10.1016/j.envpol.2020.115198_bib45
  article-title: The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1990.tb00388.x
– year: 1983
  ident: 10.1016/j.envpol.2020.115198_bib52
– volume: 21
  start-page: 625
  year: 1987
  ident: 10.1016/j.envpol.2020.115198_bib41
  article-title: Effects of sodium and phosphate on growth of cyanobacteria
  publication-title: Water Res.
  doi: 10.1016/0043-1354(87)90072-8
– volume: 2
  start-page: 36
  year: 2009
  ident: 10.1016/j.envpol.2020.115198_bib5
  article-title: Toxins produced in cyanobacterial water blooms – toxicity and risks
  publication-title: Interdiscip. Toxicol.
  doi: 10.2478/v10102-009-0006-2
– volume: 83
  year: 2017
  ident: 10.1016/j.envpol.2020.115198_bib35
  article-title: Interactions of freshwater cyanobacteria with bacterial antagonists
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02634-16
– volume: 31
  start-page: 106
  year: 2008
  ident: 10.1016/j.envpol.2020.115198_bib30
  article-title: BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae-P. viridiflava group
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/S1415-47572008000100019
– volume: 379
  start-page: 101
  year: 2006
  ident: 10.1016/j.envpol.2020.115198_bib47
  article-title: A carotenoid synthesis gene cluster from a non-marine Brevundimonas that synthesizes hydroxylated astaxanthin
  publication-title: Gene
  doi: 10.1016/j.gene.2006.04.017
– volume: 9
  year: 2014
  ident: 10.1016/j.envpol.2020.115198_bib7
  article-title: Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake
  publication-title: PLoS One
– volume: 25
  start-page: 117
  year: 1996
  ident: 10.1016/j.envpol.2020.115198_bib2
  article-title: Bacterial degradation of green microalgae: Incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(96)00113-1
– volume: 105
  start-page: 11254
  year: 2008
  ident: 10.1016/j.envpol.2020.115198_bib40
  article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0805108105
– year: 2015
  ident: 10.1016/j.envpol.2020.115198_bib31
  article-title: Toxic Microcystis novacekii T20-3 from Phakalane Ponds, Botswana: PCR amplifications of microcystin synthetase (mcy) genes, extraction and LC-ESI-MS identification of microcystins
  publication-title: J. Environ. Anal. Toxicol.
– volume: 14
  start-page: 313
  year: 2012
  ident: 10.1016/j.envpol.2020.115198_bib34
  article-title: The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2011.10.027
– volume: 4
  start-page: 10
  year: 2020
  ident: 10.1016/j.envpol.2020.115198_bib3
  article-title: Water pollution and aquatic biodiversity
  publication-title: Biodivers. Int. J.
  doi: 10.15406/bij.2020.04.00159
– volume: 384
  start-page: 121312
  year: 2020
  ident: 10.1016/j.envpol.2020.115198_bib25
  article-title: Amentoflavone, a novel cyanobacterial killing agent from Selaginella tamariscina
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121312
– volume: 11
  year: 2016
  ident: 10.1016/j.envpol.2020.115198_bib13
  article-title: Metagenomic analysis of the Indian Ocean picocyanobacterial community: Structure, potential function and evolution
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155757
– volume: 47
  start-page: 408
  year: 1997
  ident: 10.1016/j.envpol.2020.115198_bib17
  article-title: Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring
  publication-title: Int. J. Syst. Evol. Microbiol.
– year: 2006
  ident: 10.1016/j.envpol.2020.115198_bib37
– volume: 30
  start-page: 27
  year: 2018
  ident: 10.1016/j.envpol.2020.115198_bib26
  article-title: Factors associated with blooms of cyanobacteria in a large shallow lake, China
  publication-title: Environ. Sci. Eur.
  doi: 10.1186/s12302-018-0152-2
– year: 2015
  ident: 10.1016/j.envpol.2020.115198_bib4
– volume: 9
  start-page: 424
  year: 2018
  ident: 10.1016/j.envpol.2020.115198_bib16
  article-title: Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00424
– year: 1994
  ident: 10.1016/j.envpol.2020.115198_bib21
– volume: 110
  start-page: 9824
  year: 2013
  ident: 10.1016/j.envpol.2020.115198_bib15
  article-title: Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1307701110
– volume: 47
  start-page: 167
  year: 2011
  ident: 10.1016/j.envpol.2020.115198_bib53
  article-title: Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds
  publication-title: Ann. Limnol. Int. J. Lim.
  doi: 10.1051/limn/2011013
– volume: 50
  start-page: 604
  year: 2015
  ident: 10.1016/j.envpol.2020.115198_bib19
  article-title: Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03931
– volume: 67
  start-page: 2810
  year: 2001
  ident: 10.1016/j.envpol.2020.115198_bib48
  article-title: Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: Comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.6.2810-2818.2001
– volume: 5
  start-page: 25
  year: 1994
  ident: 10.1016/j.envpol.2020.115198_bib49
  article-title: Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction
  publication-title: Methods Mol. Cell. Biol.
– volume: 18
  start-page: 111
  year: 2017
  ident: 10.1016/j.envpol.2020.115198_bib38
  article-title: Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution
  publication-title: Limnology
  doi: 10.1007/s10201-016-0494-7
– volume: 133
  start-page: 18343
  year: 2011
  ident: 10.1016/j.envpol.2020.115198_bib42
  article-title: Roseobacticides: Small molecule modulators of an algal-bacterial symbiosis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207172s
SSID ssj0004333
Score 2.5504532
Snippet DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115198
SubjectTerms Bacterial community
beta-Proteobacteria
Brevundimonas
Culturable bacteria
dominant species
Flavobacterium
freshwater
Microcystin
microcystins
Microcystis aeruginosa
nitrogen
pollution
Porphyrobacter
principal component analysis
Pseudomonas
Rhodobacter
rivers
symbiosis
Terminal-restriction fragment length polymorphism
Water quality variation
Title Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River
URI https://dx.doi.org/10.1016/j.envpol.2020.115198
https://www.proquest.com/docview/2424438252
https://www.proquest.com/docview/2552024428
Volume 266
WOSCitedRecordID wos000571407900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jgMcEHRMjI_JSIhLlSq1E8c5VjBUEExIDNSdItdxpk2bMy1tWf8J_maeYztpO7GxA5coipzXJL9fn5-f3wdCbyMpYd7mYaBSHgcRkTKYmoxlwJvFJClIWOdW_fySHB7yyST91un89rkwi_NEa359nV7-V6jhGoBtUmfvAXcjFC7AOYAOR4Adjv8E_HclavO6n9tm85UPA5jawsx1QZA6K8TUUu0Lh08Thr4UumyHmsD2i8pHQ46Nw99Ecqw59NtcOZPWZXonO1LxDV-Da938Fda_y7mbMleCgQToviZx6Ng5sj-U-uRXWbZbXTa2e7xU_ePSccp5LWCJOmy8Fla5EZYGSWQ7dXlNTNiqLgVbdWg7VN9Q89bjcDZQegFvNTA_MGiHr1fV3pjtmhhEH952llkpmZGSWSlbaJskccq7aHv06WDyuc20pZRar519ep-MWUcM3nyavxk7G9N-bcscPUGP3SIEjyx5nqKO0j20M9JiVl4s8TtchwXX-y099GilYmUP7a6Bjd3MUO0g5WmHPe1wWWDgDG64hFdoh1vaYUM7vE47bGmHT3UtAmiHa9o9Qz8-Hhy9HweuhUcgaUJmgYgImRIFs4QMBZyFXDAKaoEXNM85kWD9hrmxoljEilhOQ8kUKwR80FAxpSK6i7q61Oo5wnki0ljwkCa5jEDF8GnBKedsyCWwmfI9RP23zqSrb2_arJxntyG9h4Lmrktb3-WO8YmHMXM2qrU9M-DmHXe-8ahnoMLNvpzQqpxXmcnQMvvxMbllTByDrCgi_MU9n_gletj-AV-h7uxqrl6jB3IxO62u9tFWMuH7juZ_AHrWzqA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+dynamics+of+the+bacterial+communities+associated+with+cyanobacterial+blooms+in+the+Han+River&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Kim%2C+Minkyung&rft.au=Lee%2C+Jaebok&rft.au=Yang%2C+Dongwoo&rft.au=Park%2C+Hye+Yoon&rft.date=2020-11-01&rft.issn=0269-7491&rft.volume=266&rft.spage=115198&rft_id=info:doi/10.1016%2Fj.envpol.2020.115198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2020_115198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon