Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River
DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and...
Saved in:
| Published in: | Environmental pollution (1987) Vol. 266; no. Pt 2; p. 115198 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2020
|
| Subjects: | |
| ISSN: | 0269-7491, 1873-6424, 1873-6424 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.
The bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Flavobacterium species in phylum Bacteroidetes was dominant in the cyanobacterial phycosphere in our culture-independent analysis and Brevundimonas was the most dominant species in the 1-year subcultured sample. Several isolates of Brevundimonas, Pseudomonas, and Curvibacter species could encourage the growth of M. aeruginosa. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. [Display omitted]
•Culture-independent analyses in cyanobacterial blooms were performed for 2 years.•Microcystis, Flavobacterium, and Pseudomonas were the major genus.•Brevundimonas was the predominant genus in subcultured cyanobacterial samples.•Brevundimonas species could promote the growth of M. aeruginosa.•Nitrogen addition was the most positive effect on the growth of M. aeruginosa. |
|---|---|
| AbstractList | DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. The bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Flavobacterium species in phylum Bacteroidetes was dominant in the cyanobacterial phycosphere in our culture-independent analysis and Brevundimonas was the most dominant species in the 1-year subcultured sample. Several isolates of Brevundimonas, Pseudomonas, and Curvibacter species could encourage the growth of M. aeruginosa. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. [Display omitted] •Culture-independent analyses in cyanobacterial blooms were performed for 2 years.•Microcystis, Flavobacterium, and Pseudomonas were the major genus.•Brevundimonas was the predominant genus in subcultured cyanobacterial samples.•Brevundimonas species could promote the growth of M. aeruginosa.•Nitrogen addition was the most positive effect on the growth of M. aeruginosa. DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa. |
| ArticleNumber | 115198 |
| Author | Park, Woojun Yang, Dongwoo Kim, Minkyung Lee, Jaebok Park, Hye Yoon |
| Author_xml | – sequence: 1 givenname: Minkyung surname: Kim fullname: Kim, Minkyung organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea – sequence: 2 givenname: Jaebok surname: Lee fullname: Lee, Jaebok organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea – sequence: 3 givenname: Dongwoo surname: Yang fullname: Yang, Dongwoo organization: Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea – sequence: 4 givenname: Hye Yoon surname: Park fullname: Park, Hye Yoon organization: National Institute of Biological Resources, Incheon, 22689, Republic of Korea – sequence: 5 givenname: Woojun surname: Park fullname: Park, Woojun email: wpark@korea.ac.kr organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea |
| BookMark | eNqFkc1rGzEQxUVJoU7a_6AHHXtZVytpZbmHQgnNBwQC_TiLsXaWjNmVXEl28X8fuRsI9JCcZph57x1-75ydhRiQsY-tWLaiNZ-3SwyHXRyXUsh6art2bd-wRWtXqjFa6jO2ENKsm5Vet-_Yec5bIYRWSi0Y_kTIMcDI-2OAiXzmceDlAfkGfMFE9ePjNO0DFcLMIefoCQr2_C-VB-6PEOKzdDPGOGVO4V_EDQT-gw6Y3rO3A4wZPzzNC_b76vuvy5vm7v769vLbXePVSpYGtJQbidpaL6BuwoJRuLZ2UH1vpbfaiF4JZYw2Q-c3whs0A1QGAg2iVhfs05y7S_HPHnNxE2WP4wgB4z472XUVkdbSvi6t3LSyspNV-mWW-hRzTjg4TwUKxVAS0Oha4U41uK2ba3CnGtxcQzXr_8y7RBOk42u2r7MNK64DYXLZEwaPPSX0xfWRXg54BFdnpps |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_173028 crossref_primary_10_1186_s42649_023_00085_6 crossref_primary_10_1111_1462_2920_15692 crossref_primary_10_4014_jmb_2306_06017 crossref_primary_10_1016_j_envres_2025_120754 crossref_primary_10_11614_KSL_2024_57_4_231 crossref_primary_10_1016_j_envpol_2021_118057 crossref_primary_10_1016_j_scitotenv_2023_165888 crossref_primary_10_1177_11769343221074688 crossref_primary_10_1007_s11356_021_15627_2 crossref_primary_10_1016_j_envpol_2022_119947 crossref_primary_10_1128_msystems_00310_25 crossref_primary_10_4014_jmb_2405_05026 crossref_primary_10_1016_j_watres_2024_122539 crossref_primary_10_1016_j_envres_2021_111455 crossref_primary_10_1080_02705060_2023_2205874 crossref_primary_10_1016_j_watres_2025_123683 crossref_primary_10_1099_ijsem_0_005230 crossref_primary_10_3390_microorganisms10112150 crossref_primary_10_3390_toxins15090582 crossref_primary_10_1016_j_scitotenv_2021_149040 crossref_primary_10_1111_jpy_13412 crossref_primary_10_1016_j_jenvman_2024_122128 crossref_primary_10_1016_j_hal_2024_102680 crossref_primary_10_1093_femsec_fiae048 crossref_primary_10_1007_s12275_023_00082_0 crossref_primary_10_1016_j_biortech_2022_127610 crossref_primary_10_1128_aem_02112_22 crossref_primary_10_1099_ijsem_0_004845 crossref_primary_10_3390_d15090946 crossref_primary_10_1099_ijsem_0_005185 crossref_primary_10_1007_s00343_022_1393_x crossref_primary_10_1093_ismeco_ycae170 crossref_primary_10_1007_s12275_024_00172_7 crossref_primary_10_1038_s41598_022_11995_y crossref_primary_10_1016_j_marpolbul_2023_115336 crossref_primary_10_3389_fmicb_2023_1295193 crossref_primary_10_3390_w17010079 crossref_primary_10_1016_j_watres_2021_117784 crossref_primary_10_1038_s41598_022_17788_7 crossref_primary_10_1016_j_scitotenv_2025_179481 crossref_primary_10_1007_s12275_024_00115_2 crossref_primary_10_1111_1758_2229_70029 crossref_primary_10_1016_j_hal_2024_102627 crossref_primary_10_1016_j_watres_2025_124310 crossref_primary_10_1016_j_scitotenv_2023_166467 crossref_primary_10_1007_s12223_023_01108_1 crossref_primary_10_1016_j_envpol_2021_116567 crossref_primary_10_1016_j_jhazmat_2023_130932 crossref_primary_10_3390_toxins13010025 |
| Cites_doi | 10.1016/j.scitotenv.2013.11.097 10.1016/j.hal.2019.02.002 10.3390/w11061163 10.1186/s12866-019-1585-5 10.1002/rra.760 10.1016/j.ecoenv.2008.05.014 10.1016/j.envpol.2016.06.055 10.1016/j.jhazmat.2015.08.041 10.1128/JB.185.9.2774-2785.2003 10.1016/j.envpol.2011.06.042 10.1128/JB.181.13.4089-4097.1999 10.1016/j.bej.2015.07.013 10.1111/j.1365-294X.2011.05362.x 10.2216/i0031-8884-35-6S-83.1 10.1080/00288330.2011.570769 10.1016/j.ibiod.2009.10.008 10.1038/s41598-019-56882-1 10.2134/jeq1998.00472425002700020004x 10.1002/tox.20103 10.1016/j.taap.2004.02.016 10.3390/toxins7030900 10.1016/j.enzmictec.2012.07.013 10.1371/journal.pone.0140614 10.1111/j.1469-8137.1990.tb00388.x 10.1016/0043-1354(87)90072-8 10.2478/v10102-009-0006-2 10.1128/AEM.02634-16 10.1590/S1415-47572008000100019 10.1016/j.gene.2006.04.017 10.1016/S0146-6380(96)00113-1 10.1073/pnas.0805108105 10.1016/j.hal.2011.10.027 10.15406/bij.2020.04.00159 10.1016/j.jhazmat.2019.121312 10.1371/journal.pone.0155757 10.1186/s12302-018-0152-2 10.3389/fmicb.2018.00424 10.1073/pnas.1307701110 10.1051/limn/2011013 10.1021/acs.est.5b03931 10.1128/AEM.67.6.2810-2818.2001 10.1007/s10201-016-0494-7 10.1021/ja207172s |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.envpol.2020.115198 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Environmental Sciences |
| EISSN | 1873-6424 |
| ExternalDocumentID | 10_1016_j_envpol_2020_115198 S0269749120315335 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-a422b2e488c0a2b208a63e988f3dd82c8460d3036646f5cb0c6e6fa1010e6ee43 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571407900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-7491 1873-6424 |
| IngestDate | Thu Oct 02 08:50:08 EDT 2025 Sun Sep 28 08:19:26 EDT 2025 Tue Nov 18 21:52:05 EST 2025 Sat Nov 29 07:23:58 EST 2025 Tue Dec 03 03:45:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 2 |
| Keywords | Microcystin Culturable bacteria Water quality variation Terminal-restriction fragment length polymorphism Bacterial community |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-a422b2e488c0a2b208a63e988f3dd82c8460d3036646f5cb0c6e6fa1010e6ee43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2424438252 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2552024428 proquest_miscellaneous_2424438252 crossref_citationtrail_10_1016_j_envpol_2020_115198 crossref_primary_10_1016_j_envpol_2020_115198 elsevier_sciencedirect_doi_10_1016_j_envpol_2020_115198 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Environmental pollution (1987) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Xie, Liu, Chen, Wen (bib54) 2009; 72 Mbukwa, Msagati, Mamba, Boussiba, Wepener, Leu, Kaye (bib31) 2015 Lee, Kim, Jeong, Park, Jeon, Park (bib25) 2020; 384 Schindler, Hecky, Findlay, Stainton, Parker, Paterson, Beaty, Lyng, Kaisan (bib40) 2008; 105 Abed (bib1) 2010; 62 Correll (bib12) 1998; 27 Cai, Jiang, Krumholz, Yang (bib7) 2014; 9 Marques, Marchaison, Gardan, Samson (bib30) 2008; 31 Ouahid, Pérez-Silva, del Campo (bib36) 2005; 20 Tao, Rouvière, Cheng (bib47) 2006; 379 Harada, Tsuji, Watanabe, Kondo (bib18) 1996; 35 Harke, Davis, Watson, Gobler (bib19) 2015; 50 Lorenzi, Chia, Lopes, Silva, Edwards, do Carmo Bittencourt-Oliveira (bib27) 2019; 57 Li, Wu, Tang, Su, Li, Zhang, Wang, Zhang, Liu, Hecker, Giesy, Yu (bib26) 2018; 30 Song, Coggins, Reichwaldt, Ghadouani (bib44) 2015; 7 Shan, Song, Chen, Li, Liu, Wu, Jia, Zhou, Peng (bib43) 2019; 84 O’Neil, Davis, Burford, Gobler (bib34) 2012; 14 Seale, Boraas, Warren (bib41) 1987; 21 Yamamoto, Shiah, Chen (bib53) 2011; 47 Wetzel (bib52) 1983 Chen, Chen, Zhang, Xie (bib8) 2016; 301 Saviola (bib39) 2018; 6 Bassem (bib3) 2020; 4 Horne, Goldman (bib21) 1994 Choix, de-Bashan, Bashan (bib9) 2012; 51 Feng, Liu, Wu, Ma, Li, Xu, Li, Feng (bib14) 2016; 54 Flombaum, Gallegos, Gordillo, Rincón, Zabala, Jiao, Karl, Li, Lomas, Veneziano (bib15) 2013; 110 Hanada, Kawase, Hiraishi, Takaichi, Matsuura, Shimada, Nagashima (bib17) 1997; 47 Cook, Li, Cai, Krumholz, Hambright, Paerl, Steffen, Wilson, Burford, Grossart (bib11) 2019; 65 Berg, Sutula (bib4) 2015 Codd, Morrison, Metcalf (bib10) 2005; 203 Hu, Yang, Chen, Hou, Ma, Yu (bib22) 2014; 472 Zinger, Gobet, Pommier (bib55) 2012; 21 Mikalsen, Boison, Skulberg, Fastner, Davies, Gabrielsen, Rudi, Jakobsen (bib32) 2003; 185 (bib37) 2006 Bouhaddada, Nélieu, Nasri, Delarue, Bouaïcha (bib6) 2016; 216 Guedes, Rachid, Rangel, Silva, Bisch, Azevedo, Pacheco (bib16) 2018; 9 Wang, Zhao, Zeng, Xu, Huang, Jiao, Guo (bib50) 2019; 19 Neilan, Dittmann, Rouhiainen, Bass, Schaub, Sivonen, Börner (bib33) 1999; 181 Sato, Amano, Machida, Imazeki (bib38) 2017; 18 Weller (bib51) 2011; 45 Heo, Cho, Ramanan, Oh, Kim (bib20) 2015; 103 Tang, Robson, Dilworth (bib45) 1990; 114 Tillett, Parker, Neilan (bib48) 2001; 67 Louati, Pascault, Debroas, Bernard, Humbert, Leloup (bib28) 2015; 10 Versalovic, Schneider, de Bruijn, Lupski (bib49) 1994; 5 Seyedsayamdost, Carr, Kolter, Clardy (bib42) 2011; 133 Kim, Chung, Park, Cho, Lee (bib23) 2019; 11 Maier, Kingston, Clark, Frazer, Sanderson (bib29) 2004; 20 Tang, Chen, Wang, Liu, Zhang, Gao, Pei, Zheng (bib46) 2011; 159 Afi, Metzger, Largeau, Connan, Berkaloff, Rousseau (bib2) 1996; 25 Bláha, Babica, Maršálek (bib5) 2009; 2 Díez, Nylander, Ininbergs, Dupont, Allen, Yooseph, Rusch, Bergman (bib13) 2016; 11 Kim, Shin, Lee, Park, Park (bib24) 2019; 9 Osman, Beier, Grabherr, Bertilsson (bib35) 2017; 83 Zhang (10.1016/j.envpol.2020.115198_bib54) 2009; 72 Heo (10.1016/j.envpol.2020.115198_bib20) 2015; 103 Hu (10.1016/j.envpol.2020.115198_bib22) 2014; 472 Sato (10.1016/j.envpol.2020.115198_bib38) 2017; 18 Marques (10.1016/j.envpol.2020.115198_bib30) 2008; 31 Berg (10.1016/j.envpol.2020.115198_bib4) 2015 Flombaum (10.1016/j.envpol.2020.115198_bib15) 2013; 110 Mikalsen (10.1016/j.envpol.2020.115198_bib32) 2003; 185 Abed (10.1016/j.envpol.2020.115198_bib1) 2010; 62 (10.1016/j.envpol.2020.115198_bib37) 2006 Ouahid (10.1016/j.envpol.2020.115198_bib36) 2005; 20 Seyedsayamdost (10.1016/j.envpol.2020.115198_bib42) 2011; 133 Bouhaddada (10.1016/j.envpol.2020.115198_bib6) 2016; 216 Saviola (10.1016/j.envpol.2020.115198_bib39) 2018; 6 Shan (10.1016/j.envpol.2020.115198_bib43) 2019; 84 Tillett (10.1016/j.envpol.2020.115198_bib48) 2001; 67 Weller (10.1016/j.envpol.2020.115198_bib51) 2011; 45 Yamamoto (10.1016/j.envpol.2020.115198_bib53) 2011; 47 Wang (10.1016/j.envpol.2020.115198_bib50) 2019; 19 Cai (10.1016/j.envpol.2020.115198_bib7) 2014; 9 Kim (10.1016/j.envpol.2020.115198_bib24) 2019; 9 Feng (10.1016/j.envpol.2020.115198_bib14) 2016; 54 Cook (10.1016/j.envpol.2020.115198_bib11) 2019; 65 Lorenzi (10.1016/j.envpol.2020.115198_bib27) 2019; 57 Afi (10.1016/j.envpol.2020.115198_bib2) 1996; 25 Harada (10.1016/j.envpol.2020.115198_bib18) 1996; 35 Neilan (10.1016/j.envpol.2020.115198_bib33) 1999; 181 O’Neil (10.1016/j.envpol.2020.115198_bib34) 2012; 14 Tang (10.1016/j.envpol.2020.115198_bib46) 2011; 159 Guedes (10.1016/j.envpol.2020.115198_bib16) 2018; 9 Tao (10.1016/j.envpol.2020.115198_bib47) 2006; 379 Lee (10.1016/j.envpol.2020.115198_bib25) 2020; 384 Zinger (10.1016/j.envpol.2020.115198_bib55) 2012; 21 Díez (10.1016/j.envpol.2020.115198_bib13) 2016; 11 Li (10.1016/j.envpol.2020.115198_bib26) 2018; 30 Mbukwa (10.1016/j.envpol.2020.115198_bib31) 2015 Seale (10.1016/j.envpol.2020.115198_bib41) 1987; 21 Correll (10.1016/j.envpol.2020.115198_bib12) 1998; 27 Osman (10.1016/j.envpol.2020.115198_bib35) 2017; 83 Hanada (10.1016/j.envpol.2020.115198_bib17) 1997; 47 Schindler (10.1016/j.envpol.2020.115198_bib40) 2008; 105 Tang (10.1016/j.envpol.2020.115198_bib45) 1990; 114 Louati (10.1016/j.envpol.2020.115198_bib28) 2015; 10 Chen (10.1016/j.envpol.2020.115198_bib8) 2016; 301 Harke (10.1016/j.envpol.2020.115198_bib19) 2015; 50 Wetzel (10.1016/j.envpol.2020.115198_bib52) 1983 Bassem (10.1016/j.envpol.2020.115198_bib3) 2020; 4 Song (10.1016/j.envpol.2020.115198_bib44) 2015; 7 Bláha (10.1016/j.envpol.2020.115198_bib5) 2009; 2 Versalovic (10.1016/j.envpol.2020.115198_bib49) 1994; 5 Kim (10.1016/j.envpol.2020.115198_bib23) 2019; 11 Codd (10.1016/j.envpol.2020.115198_bib10) 2005; 203 Choix (10.1016/j.envpol.2020.115198_bib9) 2012; 51 Maier (10.1016/j.envpol.2020.115198_bib29) 2004; 20 Horne (10.1016/j.envpol.2020.115198_bib21) 1994 |
| References_xml | – volume: 83 year: 2017 ident: bib35 article-title: Interactions of freshwater cyanobacteria with bacterial antagonists publication-title: Appl. Environ. Microbiol. – volume: 57 start-page: 450 year: 2019 end-page: 460 ident: bib27 article-title: Cyanobacterial biodiversity of semiarid public drinking water supply reservoirs assessed via next-generation DNA sequencing technology publication-title: J. Microbiol. – volume: 14 start-page: 313 year: 2012 end-page: 334 ident: bib34 article-title: The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change publication-title: Harmful Algae – volume: 9 year: 2014 ident: bib7 article-title: Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake publication-title: PLoS One – volume: 27 start-page: 261 year: 1998 end-page: 266 ident: bib12 article-title: The role of phosphorus in the eutrophication of receiving waters: A review publication-title: J. Environ. Qual. – volume: 4 start-page: 10 year: 2020 end-page: 16 ident: bib3 article-title: Water pollution and aquatic biodiversity publication-title: Biodivers. Int. J. – volume: 21 start-page: 625 year: 1987 end-page: 631 ident: bib41 article-title: Effects of sodium and phosphate on growth of cyanobacteria publication-title: Water Res. – volume: 65 start-page: S194 year: 2019 end-page: S207 ident: bib11 article-title: The global publication-title: Limnol. Oceanogr. – year: 2015 ident: bib31 article-title: Toxic Microcystis novacekii T20-3 from Phakalane Ponds, Botswana: PCR amplifications of microcystin synthetase (mcy) genes, extraction and LC-ESI-MS identification of microcystins publication-title: J. Environ. Anal. Toxicol. – year: 1983 ident: bib52 article-title: Limnology – volume: 6 start-page: 114 year: 2018 end-page: 115 ident: bib39 article-title: Pigments of pathogenic bacteria publication-title: J. Microbiol. Exp. – volume: 133 start-page: 18343 year: 2011 end-page: 18349 ident: bib42 article-title: Roseobacticides: Small molecule modulators of an algal-bacterial symbiosis publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1163 year: 2019 ident: bib23 article-title: Analysis of environmental factors associated with cyanobacterial dominance after river weir installation publication-title: Water – volume: 54 start-page: 468 year: 2016 end-page: 476 ident: bib14 article-title: Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors publication-title: J. Microbiol. – volume: 181 start-page: 4089 year: 1999 end-page: 4097 ident: bib33 article-title: Nonribosomal peptide synthesis and toxigenicity of cyanobacteria publication-title: J. Bacteriol. – volume: 2 start-page: 36 year: 2009 end-page: 41 ident: bib5 article-title: Toxins produced in cyanobacterial water blooms – toxicity and risks publication-title: Interdiscip. Toxicol. – volume: 203 start-page: 264 year: 2005 end-page: 272 ident: bib10 article-title: Cyanobacterial toxins: Risk management for health protection publication-title: Toxicol. Appl. Pharmacol. – volume: 384 start-page: 121312 year: 2020 ident: bib25 article-title: Amentoflavone, a novel cyanobacterial killing agent from publication-title: J. Hazard. Mater. – volume: 47 start-page: 408 year: 1997 end-page: 413 ident: bib17 article-title: sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring publication-title: Int. J. Syst. Evol. Microbiol. – volume: 21 start-page: 1878 year: 2012 end-page: 1896 ident: bib55 article-title: Two decades of describing the unseen majority of aquatic microbial diversity publication-title: Mol. Ecol. – volume: 105 start-page: 11254 year: 2008 end-page: 11258 ident: bib40 article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 301 start-page: 381 year: 2016 end-page: 399 ident: bib8 article-title: A review of reproductive toxicity of microcystins publication-title: J. Hazard. Mater. – volume: 11 year: 2016 ident: bib13 article-title: Metagenomic analysis of the Indian Ocean picocyanobacterial community: Structure, potential function and evolution publication-title: PLoS One – volume: 35 start-page: 83 year: 1996 end-page: 88 ident: bib18 article-title: Stability of microcystins from cyanobacteria—III. Effect of pH and temperature publication-title: Phycologia – volume: 18 start-page: 111 year: 2017 end-page: 119 ident: bib38 article-title: Colony formation of highly dispersed publication-title: Limnology – volume: 216 start-page: 836 year: 2016 end-page: 844 ident: bib6 article-title: High diversity of microcystins in a publication-title: Environ. Pollut. – volume: 30 start-page: 27 year: 2018 ident: bib26 article-title: Factors associated with blooms of cyanobacteria in a large shallow lake, China publication-title: Environ. Sci. Eur. – volume: 5 start-page: 25 year: 1994 end-page: 40 ident: bib49 article-title: Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction publication-title: Methods Mol. Cell. Biol. – year: 1994 ident: bib21 article-title: Limnology – volume: 110 start-page: 9824 year: 2013 end-page: 9829 ident: bib15 article-title: Present and future global distributions of the marine cyanobacteria publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 31 start-page: 106 year: 2008 end-page: 115 ident: bib30 article-title: BOX-PCR-based identification of bacterial species belonging to publication-title: Genet. Mol. Biol. – volume: 45 start-page: 651 year: 2011 end-page: 664 ident: bib51 article-title: Detection, identification and toxigenicity of cyanobacteria in New Zealand lakes using PCR-based methods publication-title: New Zealand J. Mar. Freshwater Res. – year: 2006 ident: bib37 article-title: R: a Language and Environment for Statistical Computing – volume: 62 start-page: 58 year: 2010 end-page: 64 ident: bib1 article-title: Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons publication-title: Int. Biodeter. Biodegr. – volume: 67 start-page: 2810 year: 2001 end-page: 2818 ident: bib48 article-title: Detection of toxigenicity by a probe for the microcystin synthetase A gene ( publication-title: Appl. Environ. Microbiol. – volume: 84 start-page: 84 year: 2019 end-page: 94 ident: bib43 article-title: Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes publication-title: Harmful Algae – volume: 20 start-page: 235 year: 2005 end-page: 242 ident: bib36 article-title: Identification of potentially toxic environmental publication-title: Environ. Toxicol. – volume: 19 start-page: 207 year: 2019 ident: bib50 article-title: Variations of bacterial community during the decomposition of publication-title: BMC Microbiol. – volume: 47 start-page: 167 year: 2011 end-page: 173 ident: bib53 article-title: Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds publication-title: Ann. Limnol. Int. J. Lim. – volume: 20 start-page: 459 year: 2004 end-page: 471 ident: bib29 article-title: Risk-based approach for assessing the effectiveness of flow management in controlling cyanobacterial blooms in rivers publication-title: River Res. Appl. – volume: 9 start-page: 20416 year: 2019 ident: bib24 article-title: Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming publication-title: Sci. Rep. – volume: 7 start-page: 900 year: 2015 end-page: 918 ident: bib44 article-title: The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes publication-title: Toxins – volume: 50 start-page: 604 year: 2015 end-page: 615 ident: bib19 article-title: Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys publication-title: Environ. Sci. Technol. – volume: 379 start-page: 101 year: 2006 end-page: 108 ident: bib47 article-title: A carotenoid synthesis gene cluster from a non-marine publication-title: Gene – volume: 25 start-page: 117 year: 1996 end-page: 130 ident: bib2 article-title: Bacterial degradation of green microalgae: Incubation of publication-title: Org. Geochem. – year: 2015 ident: bib4 article-title: Factors Affecting Growth of Cyanobacteria with Special Emphasis on the Sacramento-San Joaquin Delta. Southern California Coastal Water Research Project (SSCWRP) Technical Report 869 – volume: 10 year: 2015 ident: bib28 article-title: Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus publication-title: PLoS One – volume: 472 start-page: 746 year: 2014 end-page: 756 ident: bib22 article-title: Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China publication-title: Sci. Total Environ. – volume: 185 start-page: 2774 year: 2003 end-page: 2785 ident: bib32 article-title: Natural variation in the microcystin synthetase operon publication-title: J. Bacteriol. – volume: 103 start-page: 193 year: 2015 end-page: 197 ident: bib20 article-title: PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO publication-title: Biochem. Eng. J. – volume: 9 start-page: 424 year: 2018 ident: bib16 article-title: Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir publication-title: Front. Microbiol. – volume: 159 start-page: 3784 year: 2011 end-page: 3792 ident: bib46 article-title: The changes of nitric oxide production during the growth of publication-title: Environ. Pollut. – volume: 51 start-page: 294 year: 2012 end-page: 299 ident: bib9 article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized publication-title: Enzyme Microb. Technol. – volume: 72 start-page: 466 year: 2009 end-page: 472 ident: bib54 article-title: Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu publication-title: Ecotoxicol. Environ. Saf. – volume: 114 start-page: 173 year: 1990 end-page: 182 ident: bib45 article-title: The role of iron in nodulation and nitrogen fixation in publication-title: New Phytol. – volume: 472 start-page: 746 year: 2014 ident: 10.1016/j.envpol.2020.115198_bib22 article-title: Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.11.097 – volume: 84 start-page: 84 year: 2019 ident: 10.1016/j.envpol.2020.115198_bib43 article-title: Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes publication-title: Harmful Algae doi: 10.1016/j.hal.2019.02.002 – volume: 11 start-page: 1163 year: 2019 ident: 10.1016/j.envpol.2020.115198_bib23 article-title: Analysis of environmental factors associated with cyanobacterial dominance after river weir installation publication-title: Water doi: 10.3390/w11061163 – volume: 65 start-page: S194 year: 2019 ident: 10.1016/j.envpol.2020.115198_bib11 article-title: The global Microcystis interactome publication-title: Limnol. Oceanogr. – volume: 19 start-page: 207 year: 2019 ident: 10.1016/j.envpol.2020.115198_bib50 article-title: Variations of bacterial community during the decomposition of Microcystis under different temperatures and biomass publication-title: BMC Microbiol. doi: 10.1186/s12866-019-1585-5 – volume: 20 start-page: 459 year: 2004 ident: 10.1016/j.envpol.2020.115198_bib29 article-title: Risk-based approach for assessing the effectiveness of flow management in controlling cyanobacterial blooms in rivers publication-title: River Res. Appl. doi: 10.1002/rra.760 – volume: 72 start-page: 466 year: 2009 ident: 10.1016/j.envpol.2020.115198_bib54 article-title: Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2008.05.014 – volume: 216 start-page: 836 year: 2016 ident: 10.1016/j.envpol.2020.115198_bib6 article-title: High diversity of microcystins in a Microcystis bloom from an Algerian lake publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.055 – volume: 301 start-page: 381 year: 2016 ident: 10.1016/j.envpol.2020.115198_bib8 article-title: A review of reproductive toxicity of microcystins publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.08.041 – volume: 185 start-page: 2774 year: 2003 ident: 10.1016/j.envpol.2020.115198_bib32 article-title: Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains publication-title: J. Bacteriol. doi: 10.1128/JB.185.9.2774-2785.2003 – volume: 159 start-page: 3784 year: 2011 ident: 10.1016/j.envpol.2020.115198_bib46 article-title: The changes of nitric oxide production during the growth of Microcystis aerugrinosa [sic] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.06.042 – volume: 54 start-page: 468 year: 2016 ident: 10.1016/j.envpol.2020.115198_bib14 article-title: Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors publication-title: J. Microbiol. – volume: 181 start-page: 4089 year: 1999 ident: 10.1016/j.envpol.2020.115198_bib33 article-title: Nonribosomal peptide synthesis and toxigenicity of cyanobacteria publication-title: J. Bacteriol. doi: 10.1128/JB.181.13.4089-4097.1999 – volume: 103 start-page: 193 year: 2015 ident: 10.1016/j.envpol.2020.115198_bib20 article-title: PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2015.07.013 – volume: 21 start-page: 1878 year: 2012 ident: 10.1016/j.envpol.2020.115198_bib55 article-title: Two decades of describing the unseen majority of aquatic microbial diversity publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2011.05362.x – volume: 35 start-page: 83 year: 1996 ident: 10.1016/j.envpol.2020.115198_bib18 article-title: Stability of microcystins from cyanobacteria—III. Effect of pH and temperature publication-title: Phycologia doi: 10.2216/i0031-8884-35-6S-83.1 – volume: 45 start-page: 651 year: 2011 ident: 10.1016/j.envpol.2020.115198_bib51 article-title: Detection, identification and toxigenicity of cyanobacteria in New Zealand lakes using PCR-based methods publication-title: New Zealand J. Mar. Freshwater Res. doi: 10.1080/00288330.2011.570769 – volume: 62 start-page: 58 year: 2010 ident: 10.1016/j.envpol.2020.115198_bib1 article-title: Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2009.10.008 – volume: 9 start-page: 20416 year: 2019 ident: 10.1016/j.envpol.2020.115198_bib24 article-title: Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa publication-title: Sci. Rep. doi: 10.1038/s41598-019-56882-1 – volume: 6 start-page: 114 year: 2018 ident: 10.1016/j.envpol.2020.115198_bib39 article-title: Pigments of pathogenic bacteria publication-title: J. Microbiol. Exp. – volume: 27 start-page: 261 year: 1998 ident: 10.1016/j.envpol.2020.115198_bib12 article-title: The role of phosphorus in the eutrophication of receiving waters: A review publication-title: J. Environ. Qual. doi: 10.2134/jeq1998.00472425002700020004x – volume: 20 start-page: 235 year: 2005 ident: 10.1016/j.envpol.2020.115198_bib36 article-title: Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions publication-title: Environ. Toxicol. doi: 10.1002/tox.20103 – volume: 203 start-page: 264 year: 2005 ident: 10.1016/j.envpol.2020.115198_bib10 article-title: Cyanobacterial toxins: Risk management for health protection publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2004.02.016 – volume: 7 start-page: 900 year: 2015 ident: 10.1016/j.envpol.2020.115198_bib44 article-title: The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes publication-title: Toxins doi: 10.3390/toxins7030900 – volume: 57 start-page: 450 year: 2019 ident: 10.1016/j.envpol.2020.115198_bib27 article-title: Cyanobacterial biodiversity of semiarid public drinking water supply reservoirs assessed via next-generation DNA sequencing technology publication-title: J. Microbiol. – volume: 51 start-page: 294 year: 2012 ident: 10.1016/j.envpol.2020.115198_bib9 article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2012.07.013 – volume: 10 year: 2015 ident: 10.1016/j.envpol.2020.115198_bib28 article-title: Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus publication-title: PLoS One doi: 10.1371/journal.pone.0140614 – volume: 114 start-page: 173 year: 1990 ident: 10.1016/j.envpol.2020.115198_bib45 article-title: The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L publication-title: New Phytol. doi: 10.1111/j.1469-8137.1990.tb00388.x – year: 1983 ident: 10.1016/j.envpol.2020.115198_bib52 – volume: 21 start-page: 625 year: 1987 ident: 10.1016/j.envpol.2020.115198_bib41 article-title: Effects of sodium and phosphate on growth of cyanobacteria publication-title: Water Res. doi: 10.1016/0043-1354(87)90072-8 – volume: 2 start-page: 36 year: 2009 ident: 10.1016/j.envpol.2020.115198_bib5 article-title: Toxins produced in cyanobacterial water blooms – toxicity and risks publication-title: Interdiscip. Toxicol. doi: 10.2478/v10102-009-0006-2 – volume: 83 year: 2017 ident: 10.1016/j.envpol.2020.115198_bib35 article-title: Interactions of freshwater cyanobacteria with bacterial antagonists publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02634-16 – volume: 31 start-page: 106 year: 2008 ident: 10.1016/j.envpol.2020.115198_bib30 article-title: BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae-P. viridiflava group publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-47572008000100019 – volume: 379 start-page: 101 year: 2006 ident: 10.1016/j.envpol.2020.115198_bib47 article-title: A carotenoid synthesis gene cluster from a non-marine Brevundimonas that synthesizes hydroxylated astaxanthin publication-title: Gene doi: 10.1016/j.gene.2006.04.017 – volume: 9 year: 2014 ident: 10.1016/j.envpol.2020.115198_bib7 article-title: Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake publication-title: PLoS One – volume: 25 start-page: 117 year: 1996 ident: 10.1016/j.envpol.2020.115198_bib2 article-title: Bacterial degradation of green microalgae: Incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile publication-title: Org. Geochem. doi: 10.1016/S0146-6380(96)00113-1 – volume: 105 start-page: 11254 year: 2008 ident: 10.1016/j.envpol.2020.115198_bib40 article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0805108105 – year: 2015 ident: 10.1016/j.envpol.2020.115198_bib31 article-title: Toxic Microcystis novacekii T20-3 from Phakalane Ponds, Botswana: PCR amplifications of microcystin synthetase (mcy) genes, extraction and LC-ESI-MS identification of microcystins publication-title: J. Environ. Anal. Toxicol. – volume: 14 start-page: 313 year: 2012 ident: 10.1016/j.envpol.2020.115198_bib34 article-title: The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change publication-title: Harmful Algae doi: 10.1016/j.hal.2011.10.027 – volume: 4 start-page: 10 year: 2020 ident: 10.1016/j.envpol.2020.115198_bib3 article-title: Water pollution and aquatic biodiversity publication-title: Biodivers. Int. J. doi: 10.15406/bij.2020.04.00159 – volume: 384 start-page: 121312 year: 2020 ident: 10.1016/j.envpol.2020.115198_bib25 article-title: Amentoflavone, a novel cyanobacterial killing agent from Selaginella tamariscina publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121312 – volume: 11 year: 2016 ident: 10.1016/j.envpol.2020.115198_bib13 article-title: Metagenomic analysis of the Indian Ocean picocyanobacterial community: Structure, potential function and evolution publication-title: PLoS One doi: 10.1371/journal.pone.0155757 – volume: 47 start-page: 408 year: 1997 ident: 10.1016/j.envpol.2020.115198_bib17 article-title: Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring publication-title: Int. J. Syst. Evol. Microbiol. – year: 2006 ident: 10.1016/j.envpol.2020.115198_bib37 – volume: 30 start-page: 27 year: 2018 ident: 10.1016/j.envpol.2020.115198_bib26 article-title: Factors associated with blooms of cyanobacteria in a large shallow lake, China publication-title: Environ. Sci. Eur. doi: 10.1186/s12302-018-0152-2 – year: 2015 ident: 10.1016/j.envpol.2020.115198_bib4 – volume: 9 start-page: 424 year: 2018 ident: 10.1016/j.envpol.2020.115198_bib16 article-title: Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00424 – year: 1994 ident: 10.1016/j.envpol.2020.115198_bib21 – volume: 110 start-page: 9824 year: 2013 ident: 10.1016/j.envpol.2020.115198_bib15 article-title: Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1307701110 – volume: 47 start-page: 167 year: 2011 ident: 10.1016/j.envpol.2020.115198_bib53 article-title: Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds publication-title: Ann. Limnol. Int. J. Lim. doi: 10.1051/limn/2011013 – volume: 50 start-page: 604 year: 2015 ident: 10.1016/j.envpol.2020.115198_bib19 article-title: Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03931 – volume: 67 start-page: 2810 year: 2001 ident: 10.1016/j.envpol.2020.115198_bib48 article-title: Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: Comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.6.2810-2818.2001 – volume: 5 start-page: 25 year: 1994 ident: 10.1016/j.envpol.2020.115198_bib49 article-title: Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction publication-title: Methods Mol. Cell. Biol. – volume: 18 start-page: 111 year: 2017 ident: 10.1016/j.envpol.2020.115198_bib38 article-title: Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution publication-title: Limnology doi: 10.1007/s10201-016-0494-7 – volume: 133 start-page: 18343 year: 2011 ident: 10.1016/j.envpol.2020.115198_bib42 article-title: Roseobacticides: Small molecule modulators of an algal-bacterial symbiosis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207172s |
| SSID | ssj0004333 |
| Score | 2.5504532 |
| Snippet | DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115198 |
| SubjectTerms | Bacterial community beta-Proteobacteria Brevundimonas Culturable bacteria dominant species Flavobacterium freshwater Microcystin microcystins Microcystis aeruginosa nitrogen pollution Porphyrobacter principal component analysis Pseudomonas Rhodobacter rivers symbiosis Terminal-restriction fragment length polymorphism Water quality variation |
| Title | Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River |
| URI | https://dx.doi.org/10.1016/j.envpol.2020.115198 https://www.proquest.com/docview/2424438252 https://www.proquest.com/docview/2552024428 |
| Volume | 266 |
| WOSCitedRecordID | wos000571407900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jgMcEHRMjI_JSIhLlSq1E8c5VjBUEExIDNSdItdxpk2bMy1tWf8J_maeYztpO7GxA5coipzXJL9fn5-f3wdCbyMpYd7mYaBSHgcRkTKYmoxlwJvFJClIWOdW_fySHB7yyST91un89rkwi_NEa359nV7-V6jhGoBtUmfvAXcjFC7AOYAOR4Adjv8E_HclavO6n9tm85UPA5jawsx1QZA6K8TUUu0Lh08Thr4UumyHmsD2i8pHQ46Nw99Ecqw59NtcOZPWZXonO1LxDV-Da938Fda_y7mbMleCgQToviZx6Ng5sj-U-uRXWbZbXTa2e7xU_ePSccp5LWCJOmy8Fla5EZYGSWQ7dXlNTNiqLgVbdWg7VN9Q89bjcDZQegFvNTA_MGiHr1fV3pjtmhhEH952llkpmZGSWSlbaJskccq7aHv06WDyuc20pZRar519ep-MWUcM3nyavxk7G9N-bcscPUGP3SIEjyx5nqKO0j20M9JiVl4s8TtchwXX-y099GilYmUP7a6Bjd3MUO0g5WmHPe1wWWDgDG64hFdoh1vaYUM7vE47bGmHT3UtAmiHa9o9Qz8-Hhy9HweuhUcgaUJmgYgImRIFs4QMBZyFXDAKaoEXNM85kWD9hrmxoljEilhOQ8kUKwR80FAxpSK6i7q61Oo5wnki0ljwkCa5jEDF8GnBKedsyCWwmfI9RP23zqSrb2_arJxntyG9h4Lmrktb3-WO8YmHMXM2qrU9M-DmHXe-8ahnoMLNvpzQqpxXmcnQMvvxMbllTByDrCgi_MU9n_gletj-AV-h7uxqrl6jB3IxO62u9tFWMuH7juZ_AHrWzqA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+dynamics+of+the+bacterial+communities+associated+with+cyanobacterial+blooms+in+the+Han+River&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Kim%2C+Minkyung&rft.au=Lee%2C+Jaebok&rft.au=Yang%2C+Dongwoo&rft.au=Park%2C+Hye+Yoon&rft.date=2020-11-01&rft.issn=0269-7491&rft.volume=266&rft.spage=115198&rft_id=info:doi/10.1016%2Fj.envpol.2020.115198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2020_115198 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |