Moth–flame optimization algorithm: variants and applications

This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered one of the promising metaheuristic algorithms and successfully applied in various optimization problems in a wide range of fields, such as pow...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 32; no. 14; pp. 9859 - 9884
Main Authors: Shehab, Mohammad, Abualigah, Laith, Al Hamad, Husam, Alabool, Hamzeh, Alshinwan, Mohammad, Khasawneh, Ahmad M.
Format: Journal Article
Language:English
Published: London Springer London 01.07.2020
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered one of the promising metaheuristic algorithms and successfully applied in various optimization problems in a wide range of fields, such as power and energy systems, economic dispatch, engineering design, image processing and medical applications. This manuscript describes the available literature on MFO, including its variants and hybridization, the growth of MFO publications, MFO application areas, theoretical analysis and comparisons of MFO with other algorithms. Conclusions focus on the current work on MFO, highlight its weaknesses, and suggest possible future research directions. Researchers and practitioners of MFO belonging to different fields, like the domains of optimization, medical, engineering, clustering and data mining, among others will benefit from this study.
AbstractList This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered one of the promising metaheuristic algorithms and successfully applied in various optimization problems in a wide range of fields, such as power and energy systems, economic dispatch, engineering design, image processing and medical applications. This manuscript describes the available literature on MFO, including its variants and hybridization, the growth of MFO publications, MFO application areas, theoretical analysis and comparisons of MFO with other algorithms. Conclusions focus on the current work on MFO, highlight its weaknesses, and suggest possible future research directions. Researchers and practitioners of MFO belonging to different fields, like the domains of optimization, medical, engineering, clustering and data mining, among others will benefit from this study.
Author Abualigah, Laith
Khasawneh, Ahmad M.
Shehab, Mohammad
Al Hamad, Husam
Alshinwan, Mohammad
Alabool, Hamzeh
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0003-0211-3503
  surname: Shehab
  fullname: Shehab, Mohammad
  email: moh.shehab12@gmail.com
  organization: Computer Science Department, Aqaba University of Technology
– sequence: 2
  givenname: Laith
  surname: Abualigah
  fullname: Abualigah, Laith
  organization: Faculty of Computer Sciences and Informatics, Amman Arab University
– sequence: 3
  givenname: Husam
  surname: Al Hamad
  fullname: Al Hamad, Husam
  organization: Faculty of Computer Sciences and Informatics, Amman Arab University
– sequence: 4
  givenname: Hamzeh
  surname: Alabool
  fullname: Alabool, Hamzeh
  organization: Department of Information Technology, College of Computing and Informatics, Saudi Electronic University
– sequence: 5
  givenname: Mohammad
  surname: Alshinwan
  fullname: Alshinwan, Mohammad
  organization: Faculty of Computer Sciences and Informatics, Amman Arab University
– sequence: 6
  givenname: Ahmad M.
  surname: Khasawneh
  fullname: Khasawneh, Ahmad M.
  organization: Faculty of Computer Sciences and Informatics, Amman Arab University
BookMark eNp9kMtKAzEUhoNUsK2-gKsB16O5TjIuBCneoOJG1-E0TdqUuZmkgq58B9_QJ3HsCIILV2dx_u-cn2-CRk3bWISOCT4lGMuziLGgJMekzDEXEufFHhoTzljOsFAjNMYl79cFZwdoEuMGY8wLJcbo4r5N68_3D1dBbbO2S772b5B822RQrdrg07o-z14geGhSzKBZZtB1lTe7TDxE-w6qaI9-5hQ9XV89zm7z-cPN3exynhsmacpLSig10hgwSycdJ4bYBbFMKUeEEUDBSVGAKoW0pZKwUKXjlipSLpl0AGyKToa7XWiftzYmvWm3oelfasqJ4oJJzvuUGlImtDEG67TxaVc0BfCVJlh_29KDLd3b0jtbuuhR-gftgq8hvP4PsQGKfbhZ2fDb6h_qC4tSgBE
CitedBy_id crossref_primary_10_1007_s42235_023_00414_1
crossref_primary_10_1007_s11042_023_15861_5
crossref_primary_10_1038_s41598_024_67197_1
crossref_primary_10_17798_bitlisfen_1584985
crossref_primary_10_1007_s40819_025_01925_7
crossref_primary_10_1016_j_dajour_2023_100360
crossref_primary_10_1016_j_eswa_2022_117058
crossref_primary_10_1016_j_asoc_2024_112462
crossref_primary_10_1016_j_enconman_2024_118934
crossref_primary_10_1007_s10586_020_03075_5
crossref_primary_10_1063_5_0213886
crossref_primary_10_3390_pr9071155
crossref_primary_10_1007_s00521_023_09399_8
crossref_primary_10_1007_s11831_023_10055_6
crossref_primary_10_1007_s10489_021_02980_5
crossref_primary_10_1007_s13369_024_09346_2
crossref_primary_10_1093_jcde_qwad044
crossref_primary_10_1177_01423312251350754
crossref_primary_10_1007_s11831_021_09624_4
crossref_primary_10_1038_s41598_025_02890_3
crossref_primary_10_1016_j_rineng_2025_104415
crossref_primary_10_1016_j_est_2024_114626
crossref_primary_10_1007_s10586_024_04628_8
crossref_primary_10_1038_s41598_022_16498_4
crossref_primary_10_1007_s11760_025_04004_y
crossref_primary_10_3233_JIFS_219181
crossref_primary_10_1007_s44174_025_00455_6
crossref_primary_10_3390_math12172737
crossref_primary_10_1007_s11831_021_09673_9
crossref_primary_10_1016_j_advengsoft_2022_103140
crossref_primary_10_1016_j_asoc_2022_108538
crossref_primary_10_52254_1857_0070_2023_4_60_10
crossref_primary_10_3389_fenrg_2023_1170570
crossref_primary_10_3390_math11061438
crossref_primary_10_1007_s00170_022_10512_9
crossref_primary_10_1080_15567036_2022_2025954
crossref_primary_10_1007_s10462_023_10435_1
crossref_primary_10_1007_s40998_025_00830_5
crossref_primary_10_1007_s00500_020_05032_1
crossref_primary_10_1016_j_mlwa_2025_100709
crossref_primary_10_1016_j_energy_2022_126366
crossref_primary_10_3390_app14020923
crossref_primary_10_3390_sym14030455
crossref_primary_10_1007_s00500_020_05070_9
crossref_primary_10_1007_s11227_021_03915_0
crossref_primary_10_1016_j_suscom_2023_100949
crossref_primary_10_3390_healthcare11010113
crossref_primary_10_1063_5_0108340
crossref_primary_10_1002_er_7611
crossref_primary_10_1080_23080477_2023_2208398
crossref_primary_10_1080_02533839_2023_2238759
crossref_primary_10_1016_j_cie_2023_109212
crossref_primary_10_1155_2022_4602064
crossref_primary_10_1007_s00500_023_09070_3
crossref_primary_10_1016_j_knosys_2021_107552
crossref_primary_10_1177_09544062211054001
crossref_primary_10_1007_s12065_024_01004_8
crossref_primary_10_1007_s11042_022_12717_2
crossref_primary_10_1007_s11831_022_09803_x
crossref_primary_10_1007_s10845_022_01921_4
crossref_primary_10_3390_fractalfract6010027
crossref_primary_10_1016_j_comnet_2022_109049
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_1002_dac_4964
crossref_primary_10_1016_j_apm_2025_116423
crossref_primary_10_32604_cmc_2022_030547
crossref_primary_10_1016_j_prime_2025_101099
crossref_primary_10_1016_j_osn_2025_100815
crossref_primary_10_1007_s42235_023_00394_2
crossref_primary_10_1016_j_engappai_2021_104303
crossref_primary_10_1007_s11831_024_10202_7
crossref_primary_10_1016_j_heliyon_2024_e36663
crossref_primary_10_1007_s12665_024_11736_6
crossref_primary_10_1016_j_comnet_2024_110603
crossref_primary_10_1007_s12065_020_00526_1
crossref_primary_10_1007_s11831_022_09872_y
crossref_primary_10_1016_j_ins_2021_11_030
crossref_primary_10_1002_jemt_24170
crossref_primary_10_1186_s13638_025_02441_4
crossref_primary_10_1007_s10586_025_05328_7
crossref_primary_10_1007_s13369_020_05217_8
crossref_primary_10_1007_s41060_025_00769_0
crossref_primary_10_32604_cmc_2024_046461
crossref_primary_10_3389_fenrg_2023_1055845
crossref_primary_10_1038_s41598_024_75347_8
crossref_primary_10_1007_s11581_025_06566_w
crossref_primary_10_1016_j_future_2023_10_024
crossref_primary_10_3390_app10113827
crossref_primary_10_1016_j_egyr_2023_09_026
crossref_primary_10_1016_j_heliyon_2024_e37293
crossref_primary_10_1007_s10489_020_01947_2
crossref_primary_10_1016_j_eswa_2024_124765
crossref_primary_10_1109_ACCESS_2021_3073261
crossref_primary_10_3390_en16196982
crossref_primary_10_1007_s00521_020_05107_y
crossref_primary_10_1109_ACCESS_2023_3259459
crossref_primary_10_1016_j_renene_2024_122238
crossref_primary_10_1016_j_sna_2024_115651
crossref_primary_10_1016_j_tws_2024_112067
crossref_primary_10_1007_s12065_020_00428_2
crossref_primary_10_1016_j_dajour_2025_100614
crossref_primary_10_1007_s11042_020_09403_6
crossref_primary_10_1007_s00521_024_09535_y
crossref_primary_10_1051_e3sconf_202561602024
crossref_primary_10_1186_s13638_020_01802_5
crossref_primary_10_47836_pjst_33_3_24
crossref_primary_10_1007_s10489_020_01841_x
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_1007_s10825_023_02018_8
crossref_primary_10_3390_pr11082263
crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_1177_16878132221085125
crossref_primary_10_1016_j_jobe_2023_106432
crossref_primary_10_3390_app12178868
crossref_primary_10_1002_ett_70078
crossref_primary_10_3390_en16010024
crossref_primary_10_1007_s12652_022_03908_8
crossref_primary_10_3390_math9151722
crossref_primary_10_1016_j_autcon_2024_105819
crossref_primary_10_1016_j_ijhydene_2025_04_231
crossref_primary_10_1155_2022_9051058
crossref_primary_10_1007_s00521_021_06379_8
crossref_primary_10_1080_0951192X_2020_1780320
crossref_primary_10_1177_09544089241239309
crossref_primary_10_1039_D4CP04779F
crossref_primary_10_1016_j_suscom_2025_101082
crossref_primary_10_1007_s13369_021_05946_4
crossref_primary_10_1093_jcde_qwaf050
crossref_primary_10_1109_TITS_2022_3195605
crossref_primary_10_1007_s00521_021_05703_6
crossref_primary_10_1016_j_eswa_2023_122090
crossref_primary_10_1016_j_ocemod_2024_102391
crossref_primary_10_1038_s41598_025_16539_8
crossref_primary_10_1177_20552076241306272
crossref_primary_10_1016_j_eswa_2022_117562
crossref_primary_10_1016_j_eswa_2023_120905
crossref_primary_10_1155_2021_9925823
crossref_primary_10_1080_15567036_2023_2236081
crossref_primary_10_1016_j_susmat_2022_e00429
crossref_primary_10_1038_s41598_025_02568_w
crossref_primary_10_3389_fmed_2023_1330218
crossref_primary_10_1007_s11831_024_10135_1
crossref_primary_10_1007_s11831_022_09817_5
crossref_primary_10_1007_s41939_023_00169_6
crossref_primary_10_1007_s11831_023_10037_8
crossref_primary_10_3389_fnins_2023_1291608
crossref_primary_10_1016_j_asoc_2024_112030
crossref_primary_10_1007_s00521_022_07718_z
crossref_primary_10_1002_cpe_7639
crossref_primary_10_1038_s41598_025_02846_7
crossref_primary_10_3390_s20247278
crossref_primary_10_1109_ACCESS_2023_3244067
crossref_primary_10_1016_j_apenergy_2022_119969
crossref_primary_10_1007_s11831_022_09780_1
crossref_primary_10_1016_j_nucengdes_2022_111776
crossref_primary_10_1007_s10586_025_05170_x
crossref_primary_10_2174_1574893617666220920102401
crossref_primary_10_3390_pr11051380
crossref_primary_10_1016_j_knosys_2020_106510
crossref_primary_10_1007_s10489_022_03484_6
crossref_primary_10_2166_hydro_2023_039
crossref_primary_10_1186_s43067_024_00146_0
crossref_primary_10_1007_s11666_024_01846_9
crossref_primary_10_1007_s00500_023_08606_x
crossref_primary_10_3390_electronics11121919
crossref_primary_10_1109_ACCESS_2022_3145905
crossref_primary_10_1016_j_procs_2024_09_379
crossref_primary_10_1109_ACCESS_2021_3102277
crossref_primary_10_3390_pr11020534
crossref_primary_10_1007_s10489_024_05505_y
crossref_primary_10_1155_2023_4577581
crossref_primary_10_3390_biomimetics10060379
crossref_primary_10_3390_s22186826
crossref_primary_10_1007_s10878_024_01179_x
crossref_primary_10_1093_jcde_qwae044
crossref_primary_10_1007_s11042_022_12330_3
crossref_primary_10_1007_s11224_024_02411_4
crossref_primary_10_1007_s42044_023_00160_x
crossref_primary_10_1007_s00500_023_09473_2
crossref_primary_10_1002_int_22691
crossref_primary_10_1016_j_eswa_2023_122544
crossref_primary_10_1007_s40745_025_00616_w
crossref_primary_10_1016_j_oceaneng_2025_122660
crossref_primary_10_3390_su151511510
crossref_primary_10_1155_2021_6622655
crossref_primary_10_3390_app14030995
crossref_primary_10_3390_math12193080
crossref_primary_10_1007_s10489_020_01769_2
crossref_primary_10_1007_s11831_022_09853_1
crossref_primary_10_1016_j_ifacol_2022_08_059
crossref_primary_10_1016_j_est_2024_114320
crossref_primary_10_1016_j_eswa_2022_118439
crossref_primary_10_32604_cmc_2022_020583
crossref_primary_10_1007_s42044_025_00317_w
crossref_primary_10_1109_ACCESS_2020_3019445
crossref_primary_10_3390_e23121637
Cites_doi 10.1109/MEPCON.2016.7836985
10.5539/mas.v13n1p10
10.1109/TENCON.2016.7848076
10.1016/j.epsr.2016.09.025
10.1007/978-981-10-3773-3_7
10.1016/j.jestch.2019.03.005
10.1109/ITCE.2018.8316644
10.1016/j.asoc.2019.03.035
10.1016/j.energy.2018.06.088
10.1016/j.asoc.2019.01.010
10.1177/003754970107600201
10.1016/j.engappai.2017.04.018
10.1016/j.fcij.2018.06.001
10.1016/j.asoc.2017.06.059
10.1007/s41403-018-0034-3
10.1007/s00521-013-1402-2
10.1016/j.apm.2018.07.044
10.1016/j.eswa.2017.11.044
10.1177/0142331217712091
10.3233/JIFS-171001
10.1109/ICSESP.2018.8376686
10.1049/cp.2016.1273
10.1016/B978-0-12-811318-9.00028-4
10.1080/10095020.2017.1399674
10.1504/IJBIC.2019.103606
10.1016/j.aeue.2017.05.010
10.3390/app6010020
10.1109/INDEL.2016.7797803
10.1016/B978-0-08-050684-5.50016-1
10.1109/JCSSE.2016.7748919
10.1007/s10489-016-0810-2
10.1016/j.egypro.2013.07.087
10.1109/CEC.2016.7744378
10.1016/j.biosystems.2017.07.010
10.1007/978-3-540-74089-6_2
10.1007/978-3-642-20859-1
10.1109/ICITECH.2017.8079912
10.3390/e19020052
10.1007/s40998-018-0077-1
10.1016/j.eswa.2017.04.023
10.1007/s00521-016-2794-6
10.3390/sym11070925
10.1016/0360-8352(96)00045-9
10.1109/IntelliSys.2017.8324318
10.1007/s11227-017-2046-2
10.1016/j.enconman.2016.06.052
10.1016/S0031-3203(01)00046-2
10.1007/s11676-017-0555-8
10.4028/www.scientific.net/AEF.28.139
10.1109/JEEIT.2019.8717366
10.1007/s00202-018-0684-x
10.1002/oca.2373
10.1109/MEPCON.2017.8301279
10.1111/j.1540-5915.1977.tb01074.x
10.3233/IDT-170318
10.1016/j.knosys.2015.07.006
10.1016/j.ins.2012.12.043
10.3166/remn.17.103-126
10.3139/120.111024
10.1016/j.aeue.2018.01.017
10.3390/app8112028
10.1016/j.compag.2017.02.026
10.1016/j.asoc.2017.05.057
10.1016/j.patrec.2006.09.003
10.1007/978-3-319-33793-7_21
10.1007/s11721-007-0002-0
10.1007/978-3-319-59427-9_59
10.1109/INISTA.2017.8001138
10.1080/07408170304422
10.1007/978-3-642-00185-7_10
10.1126/science.220.4598.671
10.1057/jors.1993.67
10.1109/TENCON.2016.7848257
10.1109/ICCAIRO.2017.38
10.12989/scs.2017.24.1.129
10.1016/j.yofte.2017.05.018
10.1016/j.engappai.2018.05.003
10.1016/j.swevo.2011.02.001
10.1109/MEPCON.2017.8301340
10.1007/s11042-018-5637-x
10.1007/s11269-018-1992-7
10.1016/j.asoc.2018.10.017
10.1007/s40998-018-0071-7
10.1007/978-981-13-1819-1_48
10.1109/SCEECS.2016.7509293
10.1016/j.neucom.2017.04.060
10.1109/SEST.2018.8495722
10.1016/j.jocs.2017.04.011
10.1007/978-981-10-3770-2_53
10.1109/ACCESS.2018.2868118
10.1007/978-3-319-63315-2_44
10.1080/23311916.2017.1286731
10.3390/electronics7110288
10.1016/j.asoc.2017.02.034
10.1109/MEPCON.2017.8301304
10.1016/j.advengsoft.2017.07.002
10.1111/brv.12036
10.1016/S1672-6529(11)60020-6
10.1007/978-3-030-10674-4
10.1007/s00500-017-2894-y
10.1016/j.compind.2018.03.018
10.1007/s40747-018-0066-z
10.1109/MPS.2017.7974468
10.1109/ICENCO.2015.7416360
10.11591/ijeecs.v1.i3.pp431-445
10.1109/ICIIECS.2017.8276010
10.1007/978-3-319-48490-7_35
10.1109/ICEETS.2016.7583795
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04570-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 9884
ExternalDocumentID 10_1007_s00521_019_04570_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c372t-92122c7ccacdf7f41c1eb1e388f15c5a2af756a8957e987ab89f4e2819d37faa3
IEDL.DBID RSV
ISICitedReferencesCount 220
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493504900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 01:28:02 EST 2025
Sat Nov 29 02:59:14 EST 2025
Tue Nov 18 21:28:20 EST 2025
Fri Feb 21 02:35:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Moth–flame optimization
Variants of MFO
Optimization problems
Metaheuristic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-92122c7ccacdf7f41c1eb1e388f15c5a2af756a8957e987ab89f4e2819d37faa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0211-3503
PQID 2418453744
PQPubID 2043988
PageCount 26
ParticipantIDs proquest_journals_2418453744
crossref_citationtrail_10_1007_s00521_019_04570_6
crossref_primary_10_1007_s00521_019_04570_6
springer_journals_10_1007_s00521_019_04570_6
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Smith T, Villet M (2001) Parasitoids associated with the diamondback moth, plutella xylostella (l.), in the eastern cape, South Africa. In: The management of diamondback moth and other crucifer pests. Proceedings of the fourth international workshop, pp 249–253
BajpaiPKumarMGenetic algorithm-an approach to solve global optimization problemsIndian J Comput Sci Eng201013199206
Shehab M, Khader AT, Al-Betar MA, Abualigah LM (2017b) Hybridizing cuckoo search algorithm with hill climbing for numerical optimization problems. In: 2017 8th international conference on information technology (ICIT). IEEE, pp 36–43
Sulaiman M, Mustaffa Z, Aliman O, Daniyal H, Mohamed M (2016) Application of moth-flame optimization algorithm for solving optimal reactive power dispatch problem 14(2):720–734
BuchHTrivediINJangirPMoth flame optimization to solve optimal power flow with non-parametric statistical evaluation validationCogent Eng201741528542
ShehabMKhaderATLaouchediMAlomariOAHybridizing cuckoo search algorithm with bat algorithm for global numerical optimizationJ Supercomput201875128
AbualigahLMKhaderATHanandehESA combination of objective functions and hybrid krill herd algorithm for text document clustering analysisEng Appl Artif Intell201873111125
MurataTIshibuchiHTanakaHMulti-objective genetic algorithm and its applications to flowshop schedulingComput Ind Eng1996304957968
MekhamerSAbdelazizABadrMAlgabalawyMOptimal multi-criteria design of hybrid power generation systems: a new contributionInt J Comput Appl201512921324
El AzizMAEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256
KaurNRattanMGillSSPerformance optimization of broadwell-y shaped transistor using artificial neural network and moth-flame optimization techniqueMajlesi J Electr Eng20181216169
Upper N, Hemeida AM, Ibrahim A (2017) Moth-flame algorithm and loss sensitivity factor for optimal allocation of shunt capacitor banks in radial distribution systems. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 851–856
Guvenc U, Duman S, Hınıslıoglu Y (2017) Chaotic moth swarm algorithm. In: 2017 IEEE international conference on innovations in intelligent systems and applications (INISTA). IEEE, pp 90–95
Muangkote N, Sunat K, Chiewchanwattana S (2016) Multilevel thresholding for satellite image segmentation with moth-flame based optimization. In: 2016 13th international joint conference on computer science and software engineering (JCSSE). IEEE, pp 1–6
Sayed GI, Soliman M, Hassanien AE (2016b) Bio-inspired swarm techniques for thermogram breast cancer detection. In: Medical imaging in clinical applications, vol 4. Springer, pp 487–506
WangMChenHYangBZhaoXHuLCaiZHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984
EbrahimMBecherifMAbdelazizAYDynamic performance enhancement for wind energy conversion system using moth-flame optimization based blade pitch controllerSustain Energy Technol Assess201827206212
Bhesdadiya R, Trivedi IN, Jangir P, Jangir N (2018) Moth-flame optimizer method for solving constrained engineering optimization problems. In: Advances in computer and computational sciences. Springer, pp 61–68
BhadoriaAKambojVKSharmaMBathSA solution to non-convex/convex and dynamic economic load dispatch problem using moth flame optimizerINAE Lett2018326586
CanitoJRamosPMoroSRitaPUnfolding the relations between companies and technologies under the big data umbrellaComput Ind20189918
TrivediINJangirPParmarSAJangirNOptimal power flow with voltage stability improvement and loss reduction in power system using moth-flame optimizerNeural Comput Appl201830618891904
EibenAESmitSKParameter tuning for configuring and analyzing evolutionary algorithmsSwarm Evol Comput2011111931
Yang X, Luo Q, Zhang J, Wu X, Zhou Y (2017b) Moth swarm algorithm for clustering analysis. In: International conference on intelligent computing. Springer, pp 503–514
Blum C, Li X (2008) Swarm intelligence in optimization. In: Swarm intelligence. Springer, pp 43–85
ShahYAHabibHAAadilFKhanMFMaqsoodMNawazTCamonet: moth-flame optimization (MFO) based clustering algorithm for vanetsIEEE Access201864861148624
SinghPPrakashSOptical network unit placement in fiber-wireless (fiwi) access network by moth-flame optimization algorithmOptical Fiber Technol201736403411
MohantyBPerformance analysis of moth flame optimization algorithm for agc systemInt J Model Simul201842115
LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng201182191200
DiabAAZRezkHOptimal sizing and placement of capacitors in radial distribution systems based on grey wolf, dragonfly and moth-flame optimization algorithmsIran J Sci Technol Trans Electr Eng20194317796
Sayed GI, Hassanien AE, Nassef TM, Pan JS (2016a) Alzheimer’s disease diagnosis based on moth flame optimization. In: International conference on genetic and evolutionary computing. Springer, pp 298–305
MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
AbualigahLMKhaderATHanandehESA hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering 1Intell Decis Technol2018121314
KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162
ZhouYYangXLingYZhangJMeta-heuristic moth swarm algorithm for multilevel thresholding image segmentationMultimed Tools Appl201877182369923727
HeidariAMoayediAAbbaspourRAEstimating origin-destination matrices using an efficient moth flame-based spatial clustering approachInt Arch Photogram Rem Sens Spatial Inf Sci201742102112
SavsaniVTawhidMANon-dominated sorting moth flame optimization (ns-mfo) for multi-objective problemsEng Appl Artif Intell2017632032
ZhaoHZhaoHGuoSUsing gm (1, 1) optimized by mfo with rolling mechanism to forecast the electricity consumption of inner mongoliaAppl Sci20166120
LiWKWangWLLiLOptimization of water resources utilization by multi-objective moth-flame algorithmWater Resour Manag20183233033316
MeiRNSSulaimanMHMustaffaZDaniyalHOptimal reactive power dispatch solution by loss minimization using moth-flame optimization techniqueAppl Soft Comput201759210222
MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249
Ceylan O, Paudyal S (2017) Optimal capacitor placement and sizing considering load profile variations using moth-flame optimization algorithm. In: 2017 international conference on modern power systems (MPS). IEEE, pp 1–6
Gope S, Dawn S, Goswami AK, Tiwari PK (2016) Moth flame optimization based optimal bidding strategy under transmission congestion in deregulated power market. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 617–621
ZhengJLuCGaoLMulti-objective cellular particle swarm optimization for wellbore trajectory designAppl Soft Comput201977106117
FaustoFCuevasEValdiviaAGonzálezAA global optimization algorithm inspired in the behavior of selfish herdsBiosystems20171603955
SapreSMiniSOptimized relay nodes positioning to achieve full connectivity in wireless sensor networksWirel Pers Commun2018114120
JangirPOptimal power flow using a hybrid particle swarm optimizer with moth flame optimizerGlobal J Res Eng201717524542
Abd el sattar S, Kamel S, Ebeed M (2016) Enhancing security of power systems including SSSC using moth-flame optimization algorithm. In: 2016 eighteenth international middle east power systems conference (MEPCON). IEEE, pp 797–802
HazirEErdinlerESKocKHOptimization of cnc cutting parameters using design of experiment (doe) and desirability functionJ For Res201829514231434
SinghUSinghSNA new optimal feature selection scheme for classification of power quality disturbances based on ant colony frameworkAppl Soft Comput201974216225
DuPWangJYangWNiuTA novel hybrid model for short-term wind power forecastingApplied Soft Computing201939193106
HassanienAEGaberTMokhtarUHefnyHAn improved moth flame optimization algorithm based on rough sets for tomato diseases detectionComput Electron Agric20171368696
Shehab M, Daoud MS, AlMimi HM, Abualigah LM, Khader AT (2019a) Hybridizing cuckoo search algorithm for extracting the ODF maxima in spherical harmonic representation. Int J Bio-Inspired Comput (in press)
AbualigahLMQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer
GloverFHeuristics for integer programming using surrogate constraintsDecis Sci197781156166
KhalilpourazariSKhalilpourazarySAn efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problemsSoft Comput201923516991722
YousriDAbdelAtyAMSaidLAAboBakrARadwanAGBiological inspired optimization algorithms for cole-impedance parameters identificationAEU-Int J Electron Commun2017787989
ReevesCRImproving the efficiency of tabu search for machine sequencing problemsJ Oper Res Soc19934443753820775.90238
GuoLWangGGWangHWangDAn effective hybrid firefly algorithm with harmony search for global numerical optimizationSci World J2013133044
Said S, Mostafa A, Houssein EH, Hassanien AE, Hefny H (2017) Moth-flame optimization based segmentation for MRI liver images. In: International conference on advanced intelligent systems and informatics. Springer, pp 320–330
Kulturel-KonakSSmithAECoitDWEfficiently solving the redundancy allocation problem using tabu searchIIE Trans2003356515526
TolbaMADiabAAZTulskyVNAbdelazizAYLvci approach for optimal allocation of distributed generations and capacitor banks in distribution grids based on moth-flame optimization algorithmElectr Eng2018100320592084
Jangir N, Pandya MH, Trivedi IN, Bhesdadiya R, Jangir P, Kumar A (2016) Moth-flame optimization algorithm for solving real challenging constrained engineering opti
S Sapre (4570_CR96) 2018; 11
F Fausto (4570_CR42) 2017; 160
4570_CR48
C Li (4570_CR68) 2016; 45
AA Elsakaan (4570_CR39) 2018; 28
4570_CR47
S Kulturel-Konak (4570_CR66) 2003; 35
P Singh (4570_CR114) 2017; 36
4570_CR40
M Shehab (4570_CR111) 2018; 75
4570_CR41
B Mohanty (4570_CR82) 2018; 39
YA Shah (4570_CR104) 2018; 6
P Du (4570_CR34) 2019; 39
4570_CR9
RNS Mei (4570_CR74) 2017; 59
A Das (4570_CR30) 2018; 86
H Buch (4570_CR23) 2017; 4
AAZ Diab (4570_CR33) 2019; 43
LM Abualigah (4570_CR7) 2018; 12
S Koziel (4570_CR65) 2011
AAA Mohamed (4570_CR80) 2017; 142
MA El Aziz (4570_CR37) 2017; 83
X Lai (4570_CR67) 2018; 8
CR Reeves (4570_CR90) 1993; 44
M Ebrahim (4570_CR35) 2018; 27
4570_CR102
4570_CR31
ZW Geem (4570_CR44) 2001; 76
WK Li (4570_CR69) 2018; 32
P Bajpai (4570_CR16) 2010; 1
AE Eiben (4570_CR36) 2011; 1
Z Li (4570_CR71) 2016; 16
M Shehab (4570_CR106) 2016; 136
A Dhyani (4570_CR32) 2018; 42
A Heidari (4570_CR53) 2017; 42
K Kamalapathi (4570_CR59) 2018; 7
B Mohanty (4570_CR81) 2018; 4
S Reddy (4570_CR89) 2018; 25
KJ Gaston (4570_CR43) 2013; 88
4570_CR112
J Canito (4570_CR24) 2018; 99
4570_CR113
Y Li (4570_CR70) 2019; 11
GI Sayed (4570_CR101) 2018; 4
Y Liu (4570_CR72) 2011; 8
RNS Mei (4570_CR75) 2018; 10
R Poli (4570_CR88) 2007; 1
4570_CR108
4570_CR109
4570_CR103
D Allam (4570_CR11) 2016; 123
J Holland (4570_CR54) 1975; 3
S Kirkpatrick (4570_CR64) 1983; 220
IN Trivedi (4570_CR122) 2018; 30
F Glover (4570_CR46) 1977; 8
4570_CR57
M Shehab (4570_CR107) 2017; 61
4570_CR121
4570_CR123
4570_CR56
S Khalilpourazari (4570_CR62) 2019; 23
LM Abualigah (4570_CR5) 2017; 60
U Adeec (4570_CR10) 2000; 51
4570_CR50
N Kaur (4570_CR60) 2018; 12
4570_CR119
H Zhang (4570_CR135) 2002; 35
4570_CR116
J Zhang (4570_CR136) 2018; 34
A Bhadoria (4570_CR19) 2018; 3
I Strumberger (4570_CR118) 2018; 3
BS Yıldız (4570_CR132) 2017; 59
H Zhao (4570_CR137) 2016; 6
R Salgotra (4570_CR95) 2018; 95
GM Soliman (4570_CR117) 2016; 5
AA Elsakaan (4570_CR38) 2018; 157
4570_CR134
4570_CR86
4570_CR84
4570_CR130
4570_CR131
J Kennedy (4570_CR61) 2010; 12
4570_CR83
LMQ Abualigah (4570_CR8) 2019
S Mekhamer (4570_CR76) 2015; 129
M Wang (4570_CR125) 2017; 267
4570_CR127
J Zheng (4570_CR138) 2019; 77
4570_CR128
DW Zingg (4570_CR140) 2008; 17
E Hazir (4570_CR52) 2018; 29
W Yang (4570_CR129) 2017; 19
P Jangir (4570_CR58) 2017; 17
B Bentouati (4570_CR18) 2016; 1
MKY Shambour (4570_CR105) 2019; 11
M Anfal (4570_CR14) 2017; 65
MA Tolba (4570_CR120) 2018; 100
T Murata (4570_CR85) 1996; 30
V Savsani (4570_CR100) 2017; 63
R Barham (4570_CR17) 2018; 13
L Huang (4570_CR55) 2019; 41
P Anbarasan (4570_CR13) 2017; 12
A Darwish (4570_CR29) 2018; 3
X Wang (4570_CR126) 2007; 28
4570_CR28
Y Zhou (4570_CR139) 2018; 77
S Amini (4570_CR12) 2018; 21
4570_CR26
L Guo (4570_CR49) 2013; 13
LM Abualigah (4570_CR6) 2018; 73
4570_CR27
4570_CR25
4570_CR22
4570_CR20
4570_CR21
A Milad (4570_CR77) 2013; 2
J Luo (4570_CR73) 2018; 64
A Ouaarab (4570_CR87) 2014; 24
S Mirjalili (4570_CR79) 2017; 114
Q Bai (4570_CR15) 2010; 3
S Khalilpourazari (4570_CR63) 2017; 34
S Gholizadeh (4570_CR45) 2017; 24
4570_CR99
D Yousri (4570_CR133) 2017; 78
4570_CR2
4570_CR97
AE Hassanien (4570_CR51) 2017; 136
4570_CR98
M Shehab (4570_CR110) 2018; 17
4570_CR1
4570_CR93
4570_CR94
4570_CR91
4570_CR92
S Mirjalili (4570_CR78) 2015; 89
LM Abualigah (4570_CR4) 2017; 73
L Wang (4570_CR124) 2013; 232
C Abdelmadjid (4570_CR3) 2013; 36
U Singh (4570_CR115) 2019; 74
References_xml – reference: GastonKJBennieJDaviesTWHopkinsJThe ecological impacts of nighttime light pollution: a mechanistic appraisalBiol Rev2013884912927
– reference: MohantyBPerformance analysis of moth flame optimization algorithm for agc systemInt J Model Simul201842115
– reference: YıldızBSYıldızARMoth-flame optimization algorithm to determine optimal machining parameters in manufacturing processesMater Test2017595425429
– reference: Yang X, Luo Q, Zhang J, Wu X, Zhou Y (2017b) Moth swarm algorithm for clustering analysis. In: International conference on intelligent computing. Springer, pp 503–514
– reference: EibenAESmitSKParameter tuning for configuring and analyzing evolutionary algorithmsSwarm Evol Comput2011111931
– reference: Sayed GI, Soliman M, Hassanien AE (2016b) Bio-inspired swarm techniques for thermogram breast cancer detection. In: Medical imaging in clinical applications, vol 4. Springer, pp 487–506
– reference: SolimanGMKhorshidMMAbou-El-EnienTHModified moth-flame optimization algorithms for terrorism predictionInt J Appl Innov Eng Manag201654758
– reference: SinghUSinghSNA new optimal feature selection scheme for classification of power quality disturbances based on ant colony frameworkAppl Soft Comput201974216225
– reference: Jain P, Saxena A (2019) An opposition theory enabled moth flame optimizer for strategic bidding in uniform spot energy market. Eng Sci Technol Int J
– reference: AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomput2017731147734795
– reference: Mostafa E, Abdel-Nasser M, Mahmoud K (2017) Performance evaluation of metaheuristic optimization methods with mutation operators for combined economic and emission dispatch. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 1004–1009
– reference: DuPWangJYangWNiuTA novel hybrid model for short-term wind power forecastingApplied Soft Computing201939193106
– reference: GholizadehSDavoudiHFattahiFDesign of steel frames by an enhanced moth-flame optimization algorithmSteel Compos Struct2017241129140
– reference: Saikia LC, Saha D (2016) Automatic generation control in competitive market conditions with moth-flame optimization based cascade controller. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 734–738
– reference: AnbarasanPJayabarathiTOptimal reactive power dispatch using moth-flame optimization algorithmInt J Appl Eng Res2017121336903701
– reference: KaurNRattanMGillSSPerformance optimization of broadwell-y shaped transistor using artificial neural network and moth-flame optimization techniqueMajlesi J Electr Eng20181216169
– reference: GuoLWangGGWangHWangDAn effective hybrid firefly algorithm with harmony search for global numerical optimizationSci World J2013133044
– reference: ZhouYYangXLingYZhangJMeta-heuristic moth swarm algorithm for multilevel thresholding image segmentationMultimed Tools Appl201877182369923727
– reference: KhalilpourazariSKhalilpourazarySAn efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problemsSoft Comput201923516991722
– reference: LiYLiXLiuJRuanXAn improved bat algorithm based on lévy flights and adjustment factorsSymmetry2019117925
– reference: DasAMandalDGhoshalSKarRConcentric circular antenna array synthesis for side lobe suppression using moth flame optimizationAEU-Int J Electron Commun201886177184
– reference: Zawbaa HM, Emary E, Parv B, Sharawi M (2016) Feature selection approach based on moth-flame optimization algorithm. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 4612–4617
– reference: GloverFHeuristics for integer programming using surrogate constraintsDecis Sci197781156166
– reference: LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng201182191200
– reference: ElsakaanAAEl-SehiemyRAKaddahSSElsaidMIAn enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissionsEnergy201815710631078
– reference: Gope S, Dawn S, Goswami AK, Tiwari PK (2016) Moth flame optimization based optimal bidding strategy under transmission congestion in deregulated power market. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 617–621
– reference: LuoJChenHXuYHuangHZhaoXAn improved grasshopper optimization algorithm with application to financial stress predictionAppl Math Model201864654668385524307183313
– reference: ReevesCRImproving the efficiency of tabu search for machine sequencing problemsJ Oper Res Soc19934443753820775.90238
– reference: SinghPPrakashSOptical network unit placement in fiber-wireless (fiwi) access network by moth-flame optimization algorithmOptical Fiber Technol201736403411
– reference: ZhangJZhouYLuoQAn improved sine cosine water wave optimization algorithm for global optimizationJ Intell Fuzzy Syst201834421292141
– reference: AdeecUTime complexity of genetic algorithms on exponentially scaled problemsUrbana20005161801
– reference: BarhamRShariehASleitAMoth flame optimization based on golden section search and its application for link prediction problemMod Appl Sci20181311027
– reference: Ceylan O, Paudyal S (2017) Optimal capacitor placement and sizing considering load profile variations using moth-flame optimization algorithm. In: 2017 international conference on modern power systems (MPS). IEEE, pp 1–6
– reference: Ceylan O (2016) Harmonic elimination of multilevel inverters by moth-flame optimization algorithm. In: 2016 international symposium on industrial electronics (INDEL). IEEE, pp 1–5
– reference: Sahu A, Hota SK (2018) Performance comparison of 2-DOF PID controller based on moth-flame optimization technique for load frequency control of diverse energy source interconnected power system. In: 2018 technologies for smart-city energy security and power (ICSESP). IEEE, pp 1–6
– reference: SavsaniVTawhidMANon-dominated sorting moth flame optimization (ns-mfo) for multi-objective problemsEng Appl Artif Intell2017632032
– reference: Smith T, Villet M (2001) Parasitoids associated with the diamondback moth, plutella xylostella (l.), in the eastern cape, South Africa. In: The management of diamondback moth and other crucifer pests. Proceedings of the fourth international workshop, pp 249–253
– reference: Chauhan SS, Kotecha P (2016) Single level production planning in petrochemical industries using moth-flame optimization. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 263–266
– reference: HazirEErdinlerESKocKHOptimization of cnc cutting parameters using design of experiment (doe) and desirability functionJ For Res201829514231434
– reference: MeiRNSSulaimanMHMustaffaZDaniyalHOptimal reactive power dispatch solution by loss minimization using moth-flame optimization techniqueAppl Soft Comput201759210222
– reference: MurataTIshibuchiHTanakaHMulti-objective genetic algorithm and its applications to flowshop schedulingComput Ind Eng1996304957968
– reference: KamalapathiKPriyadarshiNPadmanabanSHolm-NielsenJAzamFUmayalCRamachandaramurthyVA hybrid moth-flame fuzzy logic controller based integrated cuk converter fed brushless dc motor for power factor correctionElectronics2018711288
– reference: Jangir N, Pandya MH, Trivedi IN, Bhesdadiya R, Jangir P, Kumar A (2016) Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems. In: 2016 IEEE students’ conference on electrical, electronics and computer science (SCEECS). IEEE, pp 1–5
– reference: BaiQAnalysis of particle swarm optimization algorithmComput Inf Sci201031180
– reference: ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEur J Comput Mech/Revue Eur Méc Numér2008171–21031261292.76062
– reference: BajpaiPKumarMGenetic algorithm-an approach to solve global optimization problemsIndian J Comput Sci Eng201013199206
– reference: ShehabMKhaderATAl-BetarMNew selection schemes for particle swarm optimizationIEEJ Trans Electron Inf Syst20161361217061711
– reference: ShahYAHabibHAAadilFKhanMFMaqsoodMNawazTCamonet: moth-flame optimization (MFO) based clustering algorithm for vanetsIEEE Access201864861148624
– reference: JangirPOptimal power flow using a hybrid particle swarm optimizer with moth flame optimizerGlobal J Res Eng201717524542
– reference: Abd el sattar S, Kamel S, Ebeed M (2016) Enhancing security of power systems including SSSC using moth-flame optimization algorithm. In: 2016 eighteenth international middle east power systems conference (MEPCON). IEEE, pp 797–802
– reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation20017626068
– reference: Sayed GI, Hassanien AE, Nassef TM, Pan JS (2016a) Alzheimer’s disease diagnosis based on moth flame optimization. In: International conference on genetic and evolutionary computing. Springer, pp 298–305
– reference: Bhesdadiya R, Trivedi IN, Jangir P, Kumar A, Jangir N, Totlani R (2017) A novel hybrid approach particle swarm optimizer with moth-flame optimizer algorithm. In: Advances in computer and computational sciences. Springer, pp 569–577
– reference: DarwishABio-inspired computing: algorithms review, deep analysis, and the scope of applicationsFuture Comput Inform J2018322312463751622
– reference: MohantyBAcharyuluBHotaPMoth-flame optimization algorithm optimized dual-mode controller for multiarea hybrid sources AGC systemOpt Control Appl Methods201839272073437969611393.90131
– reference: Trivedi I, Kumar A, Ranpariya AH, Jangir P (2016) Economic load dispatch problem with ramp rate limits and prohibited operating zones solve using Levy flight moth-flame optimizer. In: 2016 international conference on energy efficient technologies for sustainability (ICEETS). IEEE, pp 442–447
– reference: ZhaoHZhaoHGuoSUsing gm (1, 1) optimized by mfo with rolling mechanism to forecast the electricity consumption of inner mongoliaAppl Sci20166120
– reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm intell2007113357
– reference: BentouatiBChaibLChettihSOptimal power flow using the moth flam optimizer: a case study of the algerian power systemIndones J Electr Eng Comput Sci201613431445
– reference: FaustoFCuevasEValdiviaAGonzálezAA global optimization algorithm inspired in the behavior of selfish herdsBiosystems20171603955
– reference: HassanienAEGaberTMokhtarUHefnyHAn improved moth flame optimization algorithm based on rough sets for tomato diseases detectionComput Electron Agric20171368696
– reference: Blum C, Li X (2008) Swarm intelligence in optimization. In: Swarm intelligence. Springer, pp 43–85
– reference: Shehab M, Khader AT, Al-Betar MA, Abualigah LM (2017b) Hybridizing cuckoo search algorithm with hill climbing for numerical optimization problems. In: 2017 8th international conference on information technology (ICIT). IEEE, pp 36–43
– reference: ZhengJLuCGaoLMulti-objective cellular particle swarm optimization for wellbore trajectory designAppl Soft Comput201977106117
– reference: Ewees AA, Sahlol AT, Amasha MA (2017) A bio-inspired moth-flame optimization algorithm for Arabic handwritten letter recognition. In: 2017 international conference on control, artificial intelligence, robotics & optimization (ICCAIRO). IEEE, pp 154–159
– reference: Yamany W, Fawzy M, Tharwat A, Hassanien AE (2015) Moth-flame optimization for training multi-layer perceptrons. In: 2015 11th international computer engineering conference (ICENCO). IEEE, pp 267–272
– reference: Acharyulu B, Mohanty B, Hota P (2019) Comparative performance analysis of pid controller with filter for automatic generation control with moth-flame optimization algorithm. In: Applications of artificial intelligence techniques in engineering. Springer, pp 509–518
– reference: AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput201760423435
– reference: ShambourMKYAdaptive multi-crossover evolutionary algorithm for real-world optimisation problemsInt J Reason-Based Intell Syst2019111110
– reference: StrumbergerISaracMMarkovicDBacaninNMoth search algorithm for drone placement problemInt J Comput201837580
– reference: Sarma A, Bhutani A, Goel L (2017) Hybridization of moth flame optimization and gravitational search algorithm and its application to detection of food quality. In: 2017 intelligent systems conference (IntelliSys). IEEE, pp 52–60
– reference: Dhiman R (2018) Moth-flame optimization technique for optimal coordination of directional overcurrent relay system. Ph.D. thesis
– reference: KennedyJParticle swarm optimizationEncycl Mach Learn201012760766
– reference: Bhesdadiya R, Trivedi IN, Jangir P, Jangir N (2018) Moth-flame optimizer method for solving constrained engineering optimization problems. In: Advances in computer and computational sciences. Springer, pp 61–68
– reference: YangWWangJWangRResearch and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecastingEntropy201719252
– reference: AnfalMAbdelhafidHOptimal placement of PMUS in Algerian network using a hybrid particle swarm-moth flame optimizer (PSO-MFO)Electroteh Electron Autom2017653191196
– reference: AbualigahLMKhaderATHanandehESA hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering 1Intell Decis Technol2018121314
– reference: TrivediINJangirPParmarSAJangirNOptimal power flow with voltage stability improvement and loss reduction in power system using moth-flame optimizerNeural Comput Appl201830618891904
– reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
– reference: KozielSYangXSComputational optimization, methods and algorithms,2011BerlinSpringer1217.90006
– reference: DhyaniAPandaMKJhaBMoth-flame optimization-based fuzzy-pid controller for optimal control of active magnetic bearing systemIran J Sci Technol Trans Electr Eng2018424451463
– reference: ReddySPanwarLKPanigrahiBKKumarRSolution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): a flame selection based computational techniqueJ Comput Sci2018252983173786225
– reference: SayedGIHassanienAEA hybrid SA-MFO algorithm for function optimization and engineering design problemsComplex Intell Syst201843195212
– reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249
– reference: WangLYangRXuYNiuQPardalosPMFeiMAn improved adaptive binary harmony search algorithmInf Sci201323258873036641
– reference: Said S, Mostafa A, Houssein EH, Hassanien AE, Hefny H (2017) Moth-flame optimization based segmentation for MRI liver images. In: International conference on advanced intelligent systems and informatics. Springer, pp 320–330
– reference: Shehab M, Khader AT, Laouchedi M (2017c) Modified cuckoo search algorithm for solving global optimization problems. In: International conference of reliable information and communication technology. Springer, pp 561–570
– reference: HuangLYangBZhangXYinLYuTFangZOptimal power tracking of doubly fed induction generator-based wind turbine using swarm moth-flame optimizerTrans Inst Meas Control201941614911503
– reference: MekhamerSAbdelazizABadrMAlgabalawyMOptimal multi-criteria design of hybrid power generation systems: a new contributionInt J Comput Appl201512921324
– reference: WangMChenHYangBZhaoXHuLCaiZHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984
– reference: SapreSMiniSOptimized relay nodes positioning to achieve full connectivity in wireless sensor networksWirel Pers Commun2018114120
– reference: Abdel-mawgoud H, Kamel S, Ebeed M, Youssef AR (2017) Optimal allocation of renewable dg sources in distribution networks considering load growth. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 1236–1241
– reference: YousriDAbdelAtyAMSaidLAAboBakrARadwanAGBiological inspired optimization algorithms for cole-impedance parameters identificationAEU-Int J Electron Commun2017787989
– reference: AbualigahLMKhaderATHanandehESA combination of objective functions and hybrid krill herd algorithm for text document clustering analysisEng Appl Artif Intell201873111125
– reference: EbrahimMBecherifMAbdelazizAYDynamic performance enhancement for wind energy conversion system using moth-flame optimization based blade pitch controllerSustain Energy Technol Assess201827206212
– reference: WangXYangJTengXXiaWJensenRFeature selection based on rough sets and particle swarm optimizationPattern Recogn Lett2007284459471
– reference: Shehab M, Daoud MS, AlMimi HM, Abualigah LM, Khader AT (2019a) Hybridizing cuckoo search algorithm for extracting the ODF maxima in spherical harmonic representation. Int J Bio-Inspired Comput (in press)
– reference: MeiRNSSulaimanMHDaniyalHMustaffaZApplication of moth-flame optimizer and ant lion optimizer to solve optimal reactive power dispatch problemsJ Telecommun Electron Comput Eng2018101–2105110
– reference: BuchHTrivediINJangirPMoth flame optimization to solve optimal power flow with non-parametric statistical evaluation validationCogent Eng201741528542
– reference: SalgotraRSinghUSahaSNew cuckoo search algorithms with enhanced exploration and exploitation propertiesExpert Syst Appl201895384420
– reference: AbdelmadjidCMohamedSABoussadBCfd analysis of the volute geometry effect on the turbulent air flow through the turbocharger compressorEnergy Procedia201336746755
– reference: TolbaMADiabAAZTulskyVNAbdelazizAYLvci approach for optimal allocation of distributed generations and capacitor banks in distribution grids based on moth-flame optimization algorithmElectr Eng2018100320592084
– reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162
– reference: Saurav S, Gupta VK, Mishra SK (2017) Moth-flame optimization based algorithm for facts devices allocation in a power system. In: 2017 international conference on innovations in information, embedded and communication systems (ICIIECS). IEEE, pp 1–7
– reference: Sulaiman M, Mustaffa Z, Aliman O, Daniyal H, Mohamed M (2016) Application of moth-flame optimization algorithm for solving optimal reactive power dispatch problem 14(2):720–734
– reference: BhadoriaAKambojVKSharmaMBathSA solution to non-convex/convex and dynamic economic load dispatch problem using moth flame optimizerINAE Lett2018326586
– reference: Kulturel-KonakSSmithAECoitDWEfficiently solving the redundancy allocation problem using tabu searchIIE Trans2003356515526
– reference: KhalilpourazariSPasandidehSHRMulti-item eoq model with nonlinear unit holding cost and partial backordering: moth-flame optimization algorithmJ Ind Prod Eng20173414251
– reference: AllamDYousriDEteibaMParameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithmEnergy Convers Manag2016123535548
– reference: OuaarabAAhiodBYangXSDiscrete cuckoo search algorithm for the travelling salesman problemNeural Comput Appl2014247–816591669
– reference: Wright AH (1991) Genetic algorithms for real parameter optimization. In: Foundations of genetic algorithms, vol 1. Elsevier, pp 205–218
– reference: Muangkote N, Sunat K, Chiewchanwattana S (2016) Multilevel thresholding for satellite image segmentation with moth-flame based optimization. In: 2016 13th international joint conference on computer science and software engineering (JCSSE). IEEE, pp 1–6
– reference: AbualigahLMQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer
– reference: MiladAHarmony search algorithm: strengths and weaknessesJ Comput Eng Inf Technol20132117
– reference: Nanda SJ et al (2016) Multi-objective moth flame optimization. In: 2016 international conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 2470–2476
– reference: Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214
– reference: ShehabMKhaderATAl-BetarMAA survey on applications and variants of the cuckoo search algorithmAppl Soft Comput20176110411059
– reference: LiCLiSLiuYA least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecastingAppl Intell201645411661178
– reference: Guvenc U, Duman S, Hınıslıoglu Y (2017) Chaotic moth swarm algorithm. In: 2017 IEEE international conference on innovations in intelligent systems and applications (INISTA). IEEE, pp 90–95
– reference: HeidariAMoayediAAbbaspourRAEstimating origin-destination matrices using an efficient moth flame-based spatial clustering approachInt Arch Photogram Rem Sens Spatial Inf Sci201742102112
– reference: LaiXQiaoDZhengYZhouLA fuzzy state-of-charge estimation algorithm combining ampere-hour and an extended kalman filter for li-ion batteries based on multi-model global identificationAppl Sci20188112028
– reference: Shehab M, Khader AT, Alia MA (2019b) Enhancing cuckoo search algorithm by using reinforcement learning for constrained engineering optimization problems. In: 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT). IEEE, pp 812–816
– reference: Faris H, Aljarah I, Mirjalili S (2017) Evolving radial basis function networks using moth–flame optimizer. In: Handbook of neural computation, vol 28. Elsevier, pp 537–550
– reference: Gope S, Dawn S, Goswami AK, Tiwari PK (2016) Profit maximization with integration of wind farm in contingency constraint deregulated power market using moth flame optimization algorithm. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 1462–1466
– reference: Upper N, Hemeida AM, Ibrahim A (2017) Moth-flame algorithm and loss sensitivity factor for optimal allocation of shunt capacitor banks in radial distribution systems. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 851–856
– reference: LiWKWangWLLiLOptimization of water resources utilization by multi-objective moth-flame algorithmWater Resour Manag20183233033316
– reference: DiabAAZRezkHOptimal sizing and placement of capacitors in radial distribution systems based on grey wolf, dragonfly and moth-flame optimization algorithmsIran J Sci Technol Trans Electr Eng20194317796
– reference: ZhangHSunGFeature selection using tabu search methodPattern Recogn20023537017110999.68231
– reference: AminiSHomayouniSSafariADarvishsefatAAObject-based classification of hyperspectral data using random forest algorithmGeo-spatial Inf Sci2018212127138
– reference: ShehabMKhaderALaouchediMA hybrid method based on cuckoo search algorithm for global optimization problemsJ Inf Commun Technol2018173469491
– reference: CanitoJRamosPMoroSRitaPUnfolding the relations between companies and technologies under the big data umbrellaComput Ind20189918
– reference: Ceylan H, Ceylan H (2009) Harmony search algorithm for transport energy demand modeling. In: Music-inspired harmony search algorithm. Springer, pp 163–172
– reference: ElsakaanAAEl-SehiemyRAAKaddahSSElsaidMIEconomic power dispatch with emission constraint and valve point loading effect using moth flame optimization algorithmAdv Eng Forum Trans Tech Publ201828139149
– reference: Saleh AA, Mohamed AAA, Hemeida AM, Ibrahim AA (2018) Comparison of different optimization techniques for optimal allocation of multiple distribution generation. In: 2018 international conference on innovative trends in computer engineering (ITCE). IEEE, pp 317–323
– reference: Abdel-mawgoud H, Kamel S, Tostado M, Yu J, Jurado F (2018) Optimal installation of multiple dg using chaotic moth-flame algorithm and real power loss sensitivity factor in distribution system. In: 2018 international conference on smart energy systems and technologies (SEST), IEEE. pp 1–5
– reference: LiZZhouYZhangSSongJLévy-flight moth-flame algorithm for function optimization and engineering design problemsMath Probl Eng201616123
– reference: ShehabMKhaderATLaouchediMAlomariOAHybridizing cuckoo search algorithm with bat algorithm for global numerical optimizationJ Supercomput201875128
– reference: HollandJAdaptation in natural and artificial systems: an introductory analysis with application to biologyControl Artif Intell19753115
– reference: MohamedAAAMohamedYSEl-GaafaryAAHemeidaAMOptimal power flow using moth swarm algorithmElectr Power Syst Res2017142190206
– reference: El AzizMAEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256
– ident: 4570_CR92
– ident: 4570_CR98
  doi: 10.1109/MEPCON.2016.7836985
– volume: 4
  start-page: 1
  issue: 2
  year: 2018
  ident: 4570_CR81
  publication-title: Int J Model Simul
– volume: 13
  start-page: 10
  issue: 1
  year: 2018
  ident: 4570_CR17
  publication-title: Mod Appl Sci
  doi: 10.5539/mas.v13n1p10
– volume: 34
  start-page: 42
  issue: 1
  year: 2017
  ident: 4570_CR63
  publication-title: J Ind Prod Eng
– ident: 4570_CR31
– volume: 1
  start-page: 199
  issue: 3
  year: 2010
  ident: 4570_CR16
  publication-title: Indian J Comput Sci Eng
– ident: 4570_CR47
  doi: 10.1109/TENCON.2016.7848076
– volume: 142
  start-page: 190
  year: 2017
  ident: 4570_CR80
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2016.09.025
– ident: 4570_CR28
– volume: 3
  start-page: 75
  year: 2018
  ident: 4570_CR118
  publication-title: Int J Comput
– ident: 4570_CR21
  doi: 10.1007/978-981-10-3773-3_7
– ident: 4570_CR56
  doi: 10.1016/j.jestch.2019.03.005
– ident: 4570_CR94
  doi: 10.1109/ITCE.2018.8316644
– volume: 39
  start-page: 93
  issue: 1
  year: 2019
  ident: 4570_CR34
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.03.035
– volume: 157
  start-page: 1063
  year: 2018
  ident: 4570_CR38
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.088
– volume: 77
  start-page: 106
  year: 2019
  ident: 4570_CR138
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.01.010
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 4570_CR44
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 63
  start-page: 20
  year: 2017
  ident: 4570_CR100
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.04.018
– volume: 3
  start-page: 231
  issue: 2
  year: 2018
  ident: 4570_CR29
  publication-title: Future Comput Inform J
  doi: 10.1016/j.fcij.2018.06.001
– volume: 11
  start-page: 1
  issue: 4
  year: 2018
  ident: 4570_CR96
  publication-title: Wirel Pers Commun
– volume: 10
  start-page: 105
  issue: 1–2
  year: 2018
  ident: 4570_CR75
  publication-title: J Telecommun Electron Comput Eng
– volume: 60
  start-page: 423
  year: 2017
  ident: 4570_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.059
– volume: 3
  start-page: 65
  issue: 2
  year: 2018
  ident: 4570_CR19
  publication-title: INAE Lett
  doi: 10.1007/s41403-018-0034-3
– volume: 24
  start-page: 1659
  issue: 7–8
  year: 2014
  ident: 4570_CR87
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1402-2
– volume: 64
  start-page: 654
  year: 2018
  ident: 4570_CR73
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.07.044
– volume: 95
  start-page: 384
  year: 2018
  ident: 4570_CR95
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.11.044
– volume: 41
  start-page: 1491
  issue: 6
  year: 2019
  ident: 4570_CR55
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331217712091
– volume: 34
  start-page: 2129
  issue: 4
  year: 2018
  ident: 4570_CR136
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-171001
– ident: 4570_CR91
  doi: 10.1109/ICSESP.2018.8376686
– volume: 16
  start-page: 1
  year: 2016
  ident: 4570_CR71
  publication-title: Math Probl Eng
– ident: 4570_CR119
  doi: 10.1049/cp.2016.1273
– ident: 4570_CR41
  doi: 10.1016/B978-0-12-811318-9.00028-4
– volume: 21
  start-page: 127
  issue: 2
  year: 2018
  ident: 4570_CR12
  publication-title: Geo-spatial Inf Sci
  doi: 10.1080/10095020.2017.1399674
– volume: 2
  start-page: 1
  issue: 1
  year: 2013
  ident: 4570_CR77
  publication-title: J Comput Eng Inf Technol
– ident: 4570_CR112
  doi: 10.1504/IJBIC.2019.103606
– volume: 78
  start-page: 79
  year: 2017
  ident: 4570_CR133
  publication-title: AEU-Int J Electron Commun
  doi: 10.1016/j.aeue.2017.05.010
– volume: 6
  start-page: 20
  issue: 1
  year: 2016
  ident: 4570_CR137
  publication-title: Appl Sci
  doi: 10.3390/app6010020
– ident: 4570_CR26
  doi: 10.1109/INDEL.2016.7797803
– ident: 4570_CR127
  doi: 10.1016/B978-0-08-050684-5.50016-1
– ident: 4570_CR84
  doi: 10.1109/JCSSE.2016.7748919
– volume: 45
  start-page: 1166
  issue: 4
  year: 2016
  ident: 4570_CR68
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0810-2
– volume: 36
  start-page: 746
  year: 2013
  ident: 4570_CR3
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.07.087
– ident: 4570_CR134
  doi: 10.1109/CEC.2016.7744378
– volume: 160
  start-page: 39
  year: 2017
  ident: 4570_CR42
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2017.07.010
– ident: 4570_CR22
  doi: 10.1007/978-3-540-74089-6_2
– volume: 12
  start-page: 760
  year: 2010
  ident: 4570_CR61
  publication-title: Encycl Mach Learn
– volume-title: Computational optimization, methods and algorithms,
  year: 2011
  ident: 4570_CR65
  doi: 10.1007/978-3-642-20859-1
– ident: 4570_CR108
  doi: 10.1109/ICITECH.2017.8079912
– volume: 19
  start-page: 52
  issue: 2
  year: 2017
  ident: 4570_CR129
  publication-title: Entropy
  doi: 10.3390/e19020052
– volume: 42
  start-page: 451
  issue: 4
  year: 2018
  ident: 4570_CR32
  publication-title: Iran J Sci Technol Trans Electr Eng
  doi: 10.1007/s40998-018-0077-1
– volume: 83
  start-page: 242
  year: 2017
  ident: 4570_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.023
– volume: 30
  start-page: 1889
  issue: 6
  year: 2018
  ident: 4570_CR122
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2794-6
– volume: 11
  start-page: 925
  issue: 7
  year: 2019
  ident: 4570_CR70
  publication-title: Symmetry
  doi: 10.3390/sym11070925
– volume: 30
  start-page: 957
  issue: 4
  year: 1996
  ident: 4570_CR85
  publication-title: Comput Ind Eng
  doi: 10.1016/0360-8352(96)00045-9
– ident: 4570_CR93
– ident: 4570_CR97
  doi: 10.1109/IntelliSys.2017.8324318
– volume: 73
  start-page: 4773
  issue: 11
  year: 2017
  ident: 4570_CR4
  publication-title: J Supercomput
  doi: 10.1007/s11227-017-2046-2
– volume: 123
  start-page: 535
  year: 2016
  ident: 4570_CR11
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.06.052
– volume: 3
  start-page: 180
  issue: 1
  year: 2010
  ident: 4570_CR15
  publication-title: Comput Inf Sci
– volume: 35
  start-page: 701
  issue: 3
  year: 2002
  ident: 4570_CR135
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00046-2
– volume: 29
  start-page: 1423
  issue: 5
  year: 2018
  ident: 4570_CR52
  publication-title: J For Res
  doi: 10.1007/s11676-017-0555-8
– volume: 28
  start-page: 139
  year: 2018
  ident: 4570_CR39
  publication-title: Adv Eng Forum Trans Tech Publ
  doi: 10.4028/www.scientific.net/AEF.28.139
– ident: 4570_CR113
  doi: 10.1109/JEEIT.2019.8717366
– volume: 75
  start-page: 1
  year: 2018
  ident: 4570_CR111
  publication-title: J Supercomput
– volume: 100
  start-page: 2059
  issue: 3
  year: 2018
  ident: 4570_CR120
  publication-title: Electr Eng
  doi: 10.1007/s00202-018-0684-x
– volume: 5
  start-page: 47
  year: 2016
  ident: 4570_CR117
  publication-title: Int J Appl Innov Eng Manag
– volume: 39
  start-page: 720
  issue: 2
  year: 2018
  ident: 4570_CR82
  publication-title: Opt Control Appl Methods
  doi: 10.1002/oca.2373
– volume: 17
  start-page: 469
  issue: 3
  year: 2018
  ident: 4570_CR110
  publication-title: J Inf Commun Technol
– ident: 4570_CR123
  doi: 10.1109/MEPCON.2017.8301279
– volume: 8
  start-page: 156
  issue: 1
  year: 1977
  ident: 4570_CR46
  publication-title: Decis Sci
  doi: 10.1111/j.1540-5915.1977.tb01074.x
– volume: 12
  start-page: 3
  issue: 1
  year: 2018
  ident: 4570_CR7
  publication-title: Intell Decis Technol
  doi: 10.3233/IDT-170318
– volume: 89
  start-page: 228
  year: 2015
  ident: 4570_CR78
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 232
  start-page: 58
  year: 2013
  ident: 4570_CR124
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.12.043
– volume: 17
  start-page: 103
  issue: 1–2
  year: 2008
  ident: 4570_CR140
  publication-title: Eur J Comput Mech/Revue Eur Méc Numér
  doi: 10.3166/remn.17.103-126
– volume: 136
  start-page: 1706
  issue: 12
  year: 2016
  ident: 4570_CR106
  publication-title: IEEJ Trans Electron Inf Syst
– volume: 59
  start-page: 425
  issue: 5
  year: 2017
  ident: 4570_CR132
  publication-title: Mater Test
  doi: 10.3139/120.111024
– volume: 86
  start-page: 177
  year: 2018
  ident: 4570_CR30
  publication-title: AEU-Int J Electron Commun
  doi: 10.1016/j.aeue.2018.01.017
– volume: 8
  start-page: 2028
  issue: 11
  year: 2018
  ident: 4570_CR67
  publication-title: Appl Sci
  doi: 10.3390/app8112028
– volume: 136
  start-page: 86
  year: 2017
  ident: 4570_CR51
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.02.026
– volume: 59
  start-page: 210
  year: 2017
  ident: 4570_CR74
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.057
– volume: 28
  start-page: 459
  issue: 4
  year: 2007
  ident: 4570_CR126
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2006.09.003
– ident: 4570_CR103
  doi: 10.1007/978-3-319-33793-7_21
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 4570_CR88
  publication-title: Swarm intell
  doi: 10.1007/s11721-007-0002-0
– ident: 4570_CR109
  doi: 10.1007/978-3-319-59427-9_59
– ident: 4570_CR50
  doi: 10.1109/INISTA.2017.8001138
– volume: 35
  start-page: 515
  issue: 6
  year: 2003
  ident: 4570_CR66
  publication-title: IIE Trans
  doi: 10.1080/07408170304422
– ident: 4570_CR25
  doi: 10.1007/978-3-642-00185-7_10
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 4570_CR64
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 44
  start-page: 375
  issue: 4
  year: 1993
  ident: 4570_CR90
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.1993.67
– ident: 4570_CR48
  doi: 10.1109/TENCON.2016.7848257
– ident: 4570_CR40
  doi: 10.1109/ICCAIRO.2017.38
– volume: 24
  start-page: 129
  issue: 1
  year: 2017
  ident: 4570_CR45
  publication-title: Steel Compos Struct
  doi: 10.12989/scs.2017.24.1.129
– volume: 12
  start-page: 61
  issue: 1
  year: 2018
  ident: 4570_CR60
  publication-title: Majlesi J Electr Eng
– volume: 36
  start-page: 403
  year: 2017
  ident: 4570_CR114
  publication-title: Optical Fiber Technol
  doi: 10.1016/j.yofte.2017.05.018
– volume: 13
  start-page: 30
  year: 2013
  ident: 4570_CR49
  publication-title: Sci World J
– volume: 12
  start-page: 3690
  issue: 13
  year: 2017
  ident: 4570_CR13
  publication-title: Int J Appl Eng Res
– volume: 129
  start-page: 13
  issue: 2
  year: 2015
  ident: 4570_CR76
  publication-title: Int J Comput Appl
– volume: 73
  start-page: 111
  year: 2018
  ident: 4570_CR6
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.05.003
– volume: 1
  start-page: 19
  issue: 1
  year: 2011
  ident: 4570_CR36
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.001
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 4570_CR105
  publication-title: Int J Reason-Based Intell Syst
– ident: 4570_CR1
  doi: 10.1109/MEPCON.2017.8301340
– volume: 77
  start-page: 23699
  issue: 18
  year: 2018
  ident: 4570_CR139
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5637-x
– volume: 3
  start-page: 1
  year: 1975
  ident: 4570_CR54
  publication-title: Control Artif Intell
– volume: 32
  start-page: 3303
  year: 2018
  ident: 4570_CR69
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1992-7
– volume: 74
  start-page: 216
  year: 2019
  ident: 4570_CR115
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.10.017
– volume: 65
  start-page: 191
  issue: 3
  year: 2017
  ident: 4570_CR14
  publication-title: Electroteh Electron Autom
– volume: 43
  start-page: 77
  issue: 1
  year: 2019
  ident: 4570_CR33
  publication-title: Iran J Sci Technol Trans Electr Eng
  doi: 10.1007/s40998-018-0071-7
– volume: 27
  start-page: 206
  year: 2018
  ident: 4570_CR35
  publication-title: Sustain Energy Technol Assess
– ident: 4570_CR131
– ident: 4570_CR9
  doi: 10.1007/978-981-13-1819-1_48
– ident: 4570_CR57
  doi: 10.1109/SCEECS.2016.7509293
– volume: 267
  start-page: 69
  year: 2017
  ident: 4570_CR125
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– ident: 4570_CR2
  doi: 10.1109/SEST.2018.8495722
– volume: 25
  start-page: 298
  year: 2018
  ident: 4570_CR89
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.04.011
– ident: 4570_CR20
  doi: 10.1007/978-981-10-3770-2_53
– volume: 6
  start-page: 48611
  year: 2018
  ident: 4570_CR104
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868118
– ident: 4570_CR130
  doi: 10.1007/978-3-319-63315-2_44
– volume: 4
  start-page: 528
  issue: 1
  year: 2017
  ident: 4570_CR23
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2017.1286731
– volume: 7
  start-page: 288
  issue: 11
  year: 2018
  ident: 4570_CR59
  publication-title: Electronics
  doi: 10.3390/electronics7110288
– volume: 61
  start-page: 1041
  year: 2017
  ident: 4570_CR107
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.02.034
– volume: 51
  start-page: 61
  year: 2000
  ident: 4570_CR10
  publication-title: Urbana
– ident: 4570_CR83
  doi: 10.1109/MEPCON.2017.8301304
– volume: 114
  start-page: 163
  year: 2017
  ident: 4570_CR79
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 88
  start-page: 912
  issue: 4
  year: 2013
  ident: 4570_CR43
  publication-title: Biol Rev
  doi: 10.1111/brv.12036
– ident: 4570_CR116
– volume: 8
  start-page: 191
  issue: 2
  year: 2011
  ident: 4570_CR72
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(11)60020-6
– volume-title: Feature selection and enhanced krill herd algorithm for text document clustering
  year: 2019
  ident: 4570_CR8
  doi: 10.1007/978-3-030-10674-4
– volume: 23
  start-page: 1699
  issue: 5
  year: 2019
  ident: 4570_CR62
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2894-y
– volume: 99
  start-page: 1
  year: 2018
  ident: 4570_CR24
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2018.03.018
– volume: 4
  start-page: 195
  issue: 3
  year: 2018
  ident: 4570_CR101
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-018-0066-z
– volume: 42
  start-page: 102
  year: 2017
  ident: 4570_CR53
  publication-title: Int Arch Photogram Rem Sens Spatial Inf Sci
– ident: 4570_CR27
  doi: 10.1109/MPS.2017.7974468
– ident: 4570_CR128
  doi: 10.1109/ICENCO.2015.7416360
– volume: 1
  start-page: 431
  issue: 3
  year: 2016
  ident: 4570_CR18
  publication-title: Indones J Electr Eng Comput Sci
  doi: 10.11591/ijeecs.v1.i3.pp431-445
– ident: 4570_CR99
  doi: 10.1109/ICIIECS.2017.8276010
– volume: 17
  start-page: 524
  year: 2017
  ident: 4570_CR58
  publication-title: Global J Res Eng
– ident: 4570_CR102
  doi: 10.1007/978-3-319-48490-7_35
– ident: 4570_CR86
– ident: 4570_CR121
  doi: 10.1109/ICEETS.2016.7583795
SSID ssj0004685
Score 2.612321
SecondaryResourceType review_article
Snippet This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9859
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data mining
Data Mining and Knowledge Discovery
Design engineering
Heuristic methods
Image processing
Image Processing and Computer Vision
Optimization
Power dispatch
Probability and Statistics in Computer Science
Review Article
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgMLBQnqJQkAc2sCCNHdsMIISoWKg6gFSxRI4fgNSmpQ2d-Qf-kC_Bdp22INGFOYll5dj3fe8B4FhHMuZJphDBRiKcCI1ElGEkNKUaK8aIOvdkE7TVYp0Ob4eA2yiUVZYy0Qtq1ZcuRn5mNQ3DJKYYXw3ekGONctnVQKGxDFbclARH3dAmT3N9kZ6S03owrroHx6FpxrfOuXioc6RdaoBQ60L9VEwza_NXgtTrnWb1vzveAOvB4oTXkyOyCZZ0vgWqJZsDDJd7G1zeW9C-Pj6NPSMa9q0o6YUeTSi6z3bh4qV3AcfWt3alM1DkCs5nv3fAY_P24eYOBXYFJGPaKBC3SqshqUVQKkMNjmRk5baOGTMRkUQ0hKEkEYwTqjmjImPcYO3ybiqmRoh4F1Tyfq73AORMqURqa7plFLuJfdYLMdINOCBa84jUQFT-2lSG0eOOAaObTocmezhSC0fq4UiTGjiZfjOYDN5Y-Ha9xCANl3CUzgCogdMSxdnjv1fbX7zaAVhrOK_bF-3WQaUYvutDsCrHxetoeOSP4DdiF-Gz
  priority: 102
  providerName: ProQuest
Title Moth–flame optimization algorithm: variants and applications
URI https://link.springer.com/article/10.1007/s00521-019-04570-6
https://www.proquest.com/docview/2418453744
Volume 32
WOSCitedRecordID wos000493504900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5By8BCeYpCqTKwQSSS2LHNgASoFQtVVR6qWCLHsaFSm6I2dOY_8A_5Jdip0xYESDDHsay78z18jw_gUHoiYGGcuBgp4aKQS5d7MXK5JESihFKcnORgE6TVot0ua9umsHFR7V6kJHNNPWt2My-YJvQ1j_mY6KBnGcra3FED2NC5uV_ohsyBOHXcYmp6UGBbZb7f47M5mvuYX9KiubVpVv53znVYs96lcz4Vhw1YkukmVArkBsde5C04u9YMen99U1oepDPUamNg-zEd3n8cjnrZ0-DUmeg42pTJODxNnMVM9zbcNRu3l1euRVJwRUD8zGXaQPmCaG6JRBGFPOFpHS0DSpWHBeY-VwSHnDJMJKOEx5QpJE2OLQmI4jzYgVI6TOUuOIwmSSikdtNigsx0Ph1xKGGGGWApmYer4BUEjYQdM27QLvrRbEByTqBIEyjKCRSFVTia_fM8HbLx6-pawafIXrhxpB0RinBAEKrCccGX-eefd9v72_J9WPVNxJ0X7NaglI1e5AGsiEnWG4_qUL5otNqdOiy38UM9F8sPN__aKA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RqNRe-OmPWArFh_bUWiWJHTtIgFABLQJWHKi04hIc_5RKkAU2UHHjHXgPHoonYexNWIoENw49J7GSfDOfPR7PfABfbKSTLC0M5cxpylJlqYoKRpUVwjIjJTcLQWxCdDqy2812R-CmqYXxxyobTgxEbXra75H_wJlGMp4IxlZOTqlXjfLZ1UZCY2AWW_byL4Zs_aXNNcT3axxvrO_9bNNaVYDqRMQVzZCsYy3wzbVxwrFIR8hXNpHSRVxzFSsneKpkxoXFgFwVMnPM-nyTSYRTKsFxX8EYY_GC96Jdvv-gDjNIgGLE5E8TsaQu0gmlen7_1QfuPhXBBYZs_06Ew9Xto4RsmOc2Jv63PzQJ4_WKmqwOXGAKRmz5DiYatQpSk9d7WN5Bo7y9unboA5b0kCqP6xpUoo5-44dUh8eL5EKhR5ZVn6jSkIfZ_Q_w60W-4iOMlr3STgPJpDGptrg0LQTzHQkxynLaN3Dg1mYRb0HUQJnrurW6V_g4yu-bQgf4c4Q_D_DnaQu-3T9zMmgs8uzdsw3meU0y_XwIeAu-N1YzvPz0aDPPjzYPb9p7O9v59mZn6xO8jf0OQzigPAuj1dm5nYPX-qL60z_7HMyfwMFLW9MdbTlAWg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvutTdTTZZD4KoRVFLwQe9LWkeWmi3pV179j_4D_0lJtvdtooK4nmzIcxMkvky880A7CtX-GHQlA7BWjg44MrhbhM7XFGqsGSMyKO02QSt1VijEdanWPxptnsekhxxGmyVpjip9KSujIlv9jXTwmD7sE-oAUCzMIdtIr3F63ePU8zItCmnwTA2vwf7GW3m-zk-X00Tf_NLiDS9earF_695GZYyrxOdjsxkBWZUvArFvKMDyjb4GpzcGsW9v75pYycKdc1x0sl4moi3n7r9VvLcOUZDg69t-gzisUTTEfB1eKhe3J9dOlmHBUf41Euc0FxcnqBGi0JqqrErXHN2K58x7RJBuMc1JQFnIaEqZJQ3WaixsrE36VPNub8Bhbgbq01AIZMyEMq4b02KbdU-g0S0sEUOiFKhS0rg5sKNRFZ-3HbBaEfjwsmpgCIjoCgVUBSU4GD8T29UfOPX0eVcZ1G2EQeRcVAYJj7FuASHuY4mn3-ebetvw_dgoX5ejW6uatfbsOhZUJ7m9JahkPRf1A7Mi2HSGvR3U_v8AFa141Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moth%E2%80%93flame+optimization+algorithm%3A+variants+and+applications&rft.jtitle=Neural+computing+%26+applications&rft.au=Shehab%2C+Mohammad&rft.au=Abualigah%2C+Laith&rft.au=Al+Hamad%2C+Husam&rft.au=Alabool%2C+Hamzeh&rft.date=2020-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=14&rft.spage=9859&rft.epage=9884&rft_id=info:doi/10.1007%2Fs00521-019-04570-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_019_04570_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon