Global optimization of large-scale MIQCQPs via cluster decomposition: Application to short-term planning of an integrated refinery-petrochemical complex
Integrated refinery-petrochemical facilities are complex systems that require advanced decision-support tools for optimal short-term planning of their operations. The problem can be formulated as a mixed-integer quadratically constrained quadratic program (MIQCQP), in which discrete decisions select...
Uloženo v:
| Vydáno v: | Computers & chemical engineering Ročník 140; s. 106883 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
02.09.2020
|
| Témata: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Integrated refinery-petrochemical facilities are complex systems that require advanced decision-support tools for optimal short-term planning of their operations. The problem can be formulated as a mixed-integer quadratically constrained quadratic program (MIQCQP), in which discrete decisions select operating modes for the process units, while the entire process network is represented by input-output relationships based on bilinear expressions describing yields and stream properties, pooling equations, fuels blending indices and cost indicators. We develop a novel decomposition-based algorithm for deterministic global optimization that divides the network into small clusters according to their functionality. Inside each cluster, we derive a mixed-integer linear programming (MILP) relaxation based on piecewise McCormick envelopes, dynamically partitioning the variables that belong to the cluster and reducing their domains through optimality-based bound tightening. Results for an industrial case study in Colombia show profit improvements above 10% and significantly reduced optimality gaps compared with the state-of-the-art global optimization solvers BARON and ANTIGONE. |
|---|---|
| ISSN: | 0098-1354 1873-4375 |
| DOI: | 10.1016/j.compchemeng.2020.106883 |