Generalizable Sample-Efficient Siamese Autoencoder for Tinnitus Diagnosis in Listeners With Subjective Tinnitus

Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural systems and rehabilitation engineering Ročník 29; s. 1452 - 1461
Hlavní autori: Liu, Zhe, Yao, Lina, Wang, Xianzhi, Monaghan, Jessica J. M., Schaette, Roland, He, Zihuai, McAlpine, David
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2021.3095298