Error back-propagation algorithm for classification of imbalanced data
Classification of imbalanced data is pervasive but it is a difficult problem to solve. In order to improve the classification of imbalanced data, this letter proposes a new error function for the error back-propagation algorithm of multilayer perceptrons. The error function intensifies weight-updati...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 74; číslo 6; s. 1058 - 1061 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.02.2011
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Classification of imbalanced data is pervasive but it is a difficult problem to solve. In order to improve the classification of imbalanced data, this letter proposes a new error function for the error back-propagation algorithm of multilayer perceptrons. The error function intensifies weight-updating for the minority class and weakens weight-updating for the majority class. We verify the effectiveness of the proposed method through simulations on mammography and thyroid data sets. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2010.11.024 |