Error back-propagation algorithm for classification of imbalanced data

Classification of imbalanced data is pervasive but it is a difficult problem to solve. In order to improve the classification of imbalanced data, this letter proposes a new error function for the error back-propagation algorithm of multilayer perceptrons. The error function intensifies weight-updati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 74; H. 6; S. 1058 - 1061
1. Verfasser: Oh, Sang-Hoon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.02.2011
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classification of imbalanced data is pervasive but it is a difficult problem to solve. In order to improve the classification of imbalanced data, this letter proposes a new error function for the error back-propagation algorithm of multilayer perceptrons. The error function intensifies weight-updating for the minority class and weakens weight-updating for the majority class. We verify the effectiveness of the proposed method through simulations on mammography and thyroid data sets.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2010.11.024