Feature selection in machine learning: A new perspective

High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an effective way to solve this problem by removing irrelevant and redundant data, which can reduce computation time, improve learning accuracy, an...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 300; pp. 70 - 79
Main Authors: Cai, Jie, Luo, Jiawei, Wang, Shulin, Yang, Sheng
Format: Journal Article
Language:English
Published: Elsevier B.V 26.07.2018
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an effective way to solve this problem by removing irrelevant and redundant data, which can reduce computation time, improve learning accuracy, and facilitate a better understanding for the learning model or data. In this study, we discuss several frequently-used evaluation measures for feature selection, and then survey supervised, unsupervised, and semi-supervised feature selection methods, which are widely applied in machine learning problems, such as classification and clustering. Lastly, future challenges about feature selection are discussed.
AbstractList High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an effective way to solve this problem by removing irrelevant and redundant data, which can reduce computation time, improve learning accuracy, and facilitate a better understanding for the learning model or data. In this study, we discuss several frequently-used evaluation measures for feature selection, and then survey supervised, unsupervised, and semi-supervised feature selection methods, which are widely applied in machine learning problems, such as classification and clustering. Lastly, future challenges about feature selection are discussed.
Author Yang, Sheng
Luo, Jiawei
Wang, Shulin
Cai, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Cai
  fullname: Cai, Jie
– sequence: 2
  givenname: Jiawei
  surname: Luo
  fullname: Luo, Jiawei
– sequence: 3
  givenname: Shulin
  surname: Wang
  fullname: Wang, Shulin
– sequence: 4
  givenname: Sheng
  surname: Yang
  fullname: Yang, Sheng
  email: yangsh0506@sina.com
BookMark eNqFz81KAzEUhuEgFWyrd-AiNzBj_ibJdCGUYlUouNF1SJMzmjLNlGRa8e6doa5c6OpszvvBM0OT2EVA6JaSkhIq73ZlhKPr9iUjVJWUlkSpCzSlWrFCMy0naEpqVhWMU3aFZjnvyPBIWT1Feg22PybAGVpwfegiDhHvrfsIEXALNsUQ3xd4iSN84gOkfBjfTnCNLhvbZrj5uXP0tn54XT0Vm5fH59VyUziuWF8IRq10XrmKbDWXtWu2TSWkEpYIWXkuoNGVo8QSJUE4720NXFdMgnVaec7nSJx3XepyTtCYQwp7m74MJWbUm505682oN5SaQT9ki1-ZC70dfX2yof0vvj_HMMBOAZLJLkB04EMa9MZ34e-Bb9SCeqg
CitedBy_id crossref_primary_10_1016_j_eja_2025_127629
crossref_primary_10_1186_s12893_024_02427_x
crossref_primary_10_1016_j_mtcomm_2025_112842
crossref_primary_10_1016_j_future_2019_12_034
crossref_primary_10_1007_s41060_023_00439_z
crossref_primary_10_1016_j_asoc_2022_109969
crossref_primary_10_1007_s40747_023_01039_x
crossref_primary_10_2196_10019
crossref_primary_10_3390_app131911067
crossref_primary_10_1007_s40200_025_01661_1
crossref_primary_10_1016_j_radi_2024_06_016
crossref_primary_10_1039_D4EM00742E
crossref_primary_10_3390_diagnostics13223439
crossref_primary_10_1016_j_eswa_2023_120624
crossref_primary_10_1016_j_compag_2024_109495
crossref_primary_10_1007_s00521_022_07916_9
crossref_primary_10_1016_j_cjche_2018_11_008
crossref_primary_10_1016_j_engappai_2025_112000
crossref_primary_10_1134_S1054661822040058
crossref_primary_10_1061_JITSE4_ISENG_2477
crossref_primary_10_1016_j_jaap_2024_106512
crossref_primary_10_1016_j_knosys_2022_109655
crossref_primary_10_1093_jrr_rrae033
crossref_primary_10_1155_2022_8493004
crossref_primary_10_1002_agr_21773
crossref_primary_10_1016_j_jhydrol_2023_129200
crossref_primary_10_1016_j_epsr_2023_109848
crossref_primary_10_3390_s23115243
crossref_primary_10_1002_aenm_202501857
crossref_primary_10_1186_s12903_024_03910_w
crossref_primary_10_1007_s10489_025_06558_3
crossref_primary_10_1007_s13042_021_01347_z
crossref_primary_10_1016_j_measurement_2021_109021
crossref_primary_10_1007_s12530_023_09507_y
crossref_primary_10_1016_j_eswa_2022_118255
crossref_primary_10_1093_nsr_nwz190
crossref_primary_10_1016_j_ijleo_2023_170957
crossref_primary_10_1093_bib_bbz091
crossref_primary_10_1007_s12652_025_05008_9
crossref_primary_10_1016_j_iot_2022_100541
crossref_primary_10_1017_dap_2023_46
crossref_primary_10_1007_s41066_019_00162_w
crossref_primary_10_1016_j_neucom_2024_128150
crossref_primary_10_1080_10106049_2021_1967464
crossref_primary_10_3390_s18072166
crossref_primary_10_1016_j_ces_2024_119955
crossref_primary_10_3390_en16134922
crossref_primary_10_1016_j_neucom_2021_03_002
crossref_primary_10_1002_adts_202000029
crossref_primary_10_1007_s00404_022_06864_y
crossref_primary_10_1109_JSTSP_2024_3378887
crossref_primary_10_14423_SMJ_0000000000001427
crossref_primary_10_1016_j_mtchem_2025_102640
crossref_primary_10_1016_j_chemosphere_2021_131954
crossref_primary_10_1016_j_envsoft_2024_106053
crossref_primary_10_3390_info15010057
crossref_primary_10_1038_s41598_024_82838_1
crossref_primary_10_1109_TFUZZ_2024_3437367
crossref_primary_10_1049_ntw2_12077
crossref_primary_10_3233_JIFS_189461
crossref_primary_10_1007_s00521_021_05991_y
crossref_primary_10_1007_s42417_024_01470_5
crossref_primary_10_1016_j_knosys_2022_108787
crossref_primary_10_1007_s13042_022_01616_5
crossref_primary_10_1155_2022_5869529
crossref_primary_10_3390_s21072368
crossref_primary_10_1007_s40614_020_00270_y
crossref_primary_10_1111_exsy_13327
crossref_primary_10_1016_j_engappai_2024_107865
crossref_primary_10_1186_s40537_024_00958_x
crossref_primary_10_1007_s13369_022_06590_2
crossref_primary_10_1109_ACCESS_2023_3280122
crossref_primary_10_5194_nhess_23_1665_2023
crossref_primary_10_1016_j_cie_2020_106536
crossref_primary_10_1016_j_cca_2025_120165
crossref_primary_10_3390_bs13050427
crossref_primary_10_1007_s00766_024_00416_3
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1016_j_scs_2019_101438
crossref_primary_10_3390_bdcc5030036
crossref_primary_10_1371_journal_pone_0318874
crossref_primary_10_1016_j_eswa_2021_114658
crossref_primary_10_1109_ACCESS_2024_3376235
crossref_primary_10_3390_diagnostics11101787
crossref_primary_10_3390_en16114271
crossref_primary_10_1371_journal_pcbi_1010180
crossref_primary_10_3390_s22103819
crossref_primary_10_1016_j_envpol_2024_123763
crossref_primary_10_1088_1361_6501_ad6890
crossref_primary_10_1371_journal_pone_0272956
crossref_primary_10_3390_e21121179
crossref_primary_10_3390_electronics10151757
crossref_primary_10_3390_fi12100177
crossref_primary_10_3390_s21144941
crossref_primary_10_1093_bib_bbac537
crossref_primary_10_1155_2022_3879266
crossref_primary_10_1109_ACCESS_2021_3049815
crossref_primary_10_1007_s10586_023_04001_1
crossref_primary_10_1016_j_jprot_2025_105439
crossref_primary_10_1109_ACCESS_2025_3551772
crossref_primary_10_1109_ACCESS_2020_3046190
crossref_primary_10_1016_j_ribaf_2023_101913
crossref_primary_10_14358_PERS_21_00030R2
crossref_primary_10_1007_s11069_024_06878_6
crossref_primary_10_1007_s11227_025_07163_4
crossref_primary_10_3390_su13116199
crossref_primary_10_1007_s10489_022_03971_w
crossref_primary_10_1049_cit2_12317
crossref_primary_10_1088_1361_6579_adce52
crossref_primary_10_1016_j_earscirev_2022_103944
crossref_primary_10_1016_j_bspc_2023_105309
crossref_primary_10_1002_crat_202200064
crossref_primary_10_1088_1741_2552_acb088
crossref_primary_10_1109_JSTARS_2023_3298996
crossref_primary_10_1016_j_matdes_2022_111483
crossref_primary_10_1007_s41870_024_01974_z
crossref_primary_10_1016_j_jelectrocard_2020_04_011
crossref_primary_10_1111_pai_13247
crossref_primary_10_2478_abm_2024_0029
crossref_primary_10_3390_sym15010140
crossref_primary_10_1016_j_neucom_2020_07_028
crossref_primary_10_3390_s23187710
crossref_primary_10_1007_s44163_025_00305_w
crossref_primary_10_1016_j_compag_2023_108064
crossref_primary_10_1016_j_engappai_2025_110041
crossref_primary_10_1016_j_iotcps_2025_05_002
crossref_primary_10_1007_s40436_024_00498_w
crossref_primary_10_1007_s00521_025_11273_8
crossref_primary_10_1016_j_aquatox_2023_106429
crossref_primary_10_1007_s10489_021_03118_3
crossref_primary_10_1016_j_cie_2022_108022
crossref_primary_10_3390_app132413319
crossref_primary_10_3390_rs17172955
crossref_primary_10_1109_ACCESS_2023_3294563
crossref_primary_10_3390_su14074294
crossref_primary_10_1038_s41467_025_60897_w
crossref_primary_10_1007_s10489_020_01765_6
crossref_primary_10_1016_j_comcom_2023_02_019
crossref_primary_10_1097_MNM_0000000000002003
crossref_primary_10_1038_s41528_023_00286_9
crossref_primary_10_1016_j_future_2024_05_013
crossref_primary_10_1109_JIOT_2021_3101231
crossref_primary_10_3390_w17081131
crossref_primary_10_1186_s12859_021_04049_z
crossref_primary_10_3390_s22093566
crossref_primary_10_1016_j_engappai_2023_106644
crossref_primary_10_1186_s12911_023_02142_2
crossref_primary_10_1002_adfm_202425588
crossref_primary_10_1038_s41598_023_30941_0
crossref_primary_10_1177_15553434221122899
crossref_primary_10_1093_bib_bbab410
crossref_primary_10_1016_j_patcog_2020_107760
crossref_primary_10_3389_fgene_2023_1054032
crossref_primary_10_1016_j_bspc_2023_105920
crossref_primary_10_1109_TKDE_2024_3397878
crossref_primary_10_1016_j_compchemeng_2019_106656
crossref_primary_10_7717_peerj_cs_2528
crossref_primary_10_3390_rs14246376
crossref_primary_10_1016_j_knosys_2020_106429
crossref_primary_10_1111_jocs_15917
crossref_primary_10_1016_j_jksuci_2023_101704
crossref_primary_10_3390_biomimetics8020266
crossref_primary_10_3389_fneur_2019_00996
crossref_primary_10_3390_e23101274
crossref_primary_10_1109_ACCESS_2024_3435333
crossref_primary_10_3390_biom15010081
crossref_primary_10_1093_cercor_bhac213
crossref_primary_10_1111_epi_18605
crossref_primary_10_1371_journal_pone_0295801
crossref_primary_10_3390_genes13101916
crossref_primary_10_1016_j_solener_2020_09_071
crossref_primary_10_1016_j_aap_2023_107022
crossref_primary_10_1186_s12911_025_02995_9
crossref_primary_10_1016_j_compchemeng_2024_108623
crossref_primary_10_32604_cmc_2022_024566
crossref_primary_10_1016_j_iot_2024_101110
crossref_primary_10_1109_ACCESS_2024_3450968
crossref_primary_10_3390_rs12122028
crossref_primary_10_1016_j_jmsy_2021_03_014
crossref_primary_10_1038_s41398_021_01669_0
crossref_primary_10_1016_j_ymben_2022_12_009
crossref_primary_10_3390_app142310965
crossref_primary_10_1007_s42979_024_03308_z
crossref_primary_10_1109_ACCESS_2020_3033784
crossref_primary_10_3389_fendo_2022_1011492
crossref_primary_10_1016_j_cmpb_2021_105942
crossref_primary_10_1007_s00521_022_07755_8
crossref_primary_10_1016_j_nxmate_2024_100145
crossref_primary_10_1002_aaai_12135
crossref_primary_10_1007_s11783_023_1748_3
crossref_primary_10_1016_j_geoderma_2020_114552
crossref_primary_10_1007_s10660_022_09624_x
crossref_primary_10_1016_j_ijar_2021_01_003
crossref_primary_10_1016_j_artmed_2022_102406
crossref_primary_10_1061_IJGNAI_GMENG_9026
crossref_primary_10_1007_s10489_021_02405_3
crossref_primary_10_1016_j_ijfatigue_2025_109117
crossref_primary_10_1016_j_actamat_2021_117431
crossref_primary_10_1016_j_asoc_2022_109355
crossref_primary_10_1016_j_indcrop_2025_121289
crossref_primary_10_1049_ipr2_12365
crossref_primary_10_1016_j_rsase_2020_100425
crossref_primary_10_1016_j_egyr_2022_10_125
crossref_primary_10_1007_s42947_022_00213_7
crossref_primary_10_3390_app12178654
crossref_primary_10_1109_ACCESS_2021_3117891
crossref_primary_10_1016_j_apenergy_2024_125221
crossref_primary_10_1186_s12938_024_01219_x
crossref_primary_10_1016_j_cemconcomp_2024_105488
crossref_primary_10_1093_comjnl_bxae068
crossref_primary_10_3390_app11073273
crossref_primary_10_3390_agronomy13123070
crossref_primary_10_1016_j_jksuci_2023_101737
crossref_primary_10_1177_1088467X251370595
crossref_primary_10_1093_comjnl_bxz161
crossref_primary_10_1093_comjnl_bxz163
crossref_primary_10_1016_j_cma_2022_115845
crossref_primary_10_1016_j_future_2025_107827
crossref_primary_10_1109_ACCESS_2020_2970023
crossref_primary_10_1109_TIV_2023_3314788
crossref_primary_10_3390_s22134716
crossref_primary_10_3390_s25144515
crossref_primary_10_1016_j_chemosphere_2024_141584
crossref_primary_10_1016_j_asoc_2020_106537
crossref_primary_10_32604_cmc_2023_032287
crossref_primary_10_3390_su141912485
crossref_primary_10_1016_j_knosys_2023_110577
crossref_primary_10_1016_j_asoc_2021_107907
crossref_primary_10_1155_2022_5988567
crossref_primary_10_1109_TIM_2021_3121473
crossref_primary_10_1016_j_aap_2024_107740
crossref_primary_10_1016_j_compind_2025_104273
crossref_primary_10_1016_j_copsyc_2020_05_002
crossref_primary_10_1109_ACCESS_2021_3126777
crossref_primary_10_1007_s44196_025_00881_w
crossref_primary_10_1007_s11042_022_12913_0
crossref_primary_10_1007_s40200_023_01357_4
crossref_primary_10_1016_j_engappai_2020_104099
crossref_primary_10_3390_agronomy15020492
crossref_primary_10_1186_s12938_022_01049_9
crossref_primary_10_1016_j_ecolind_2021_107499
crossref_primary_10_3390_en18153955
crossref_primary_10_1007_s40735_025_01000_0
crossref_primary_10_1016_j_cirp_2024_05_004
crossref_primary_10_1109_ACCESS_2022_3165814
crossref_primary_10_1016_j_cageo_2024_105788
crossref_primary_10_1080_09585192_2025_2480617
crossref_primary_10_3390_app14083254
crossref_primary_10_3390_biomedinformatics5030054
crossref_primary_10_1155_acis_2766701
crossref_primary_10_1155_2021_3569632
crossref_primary_10_1002_ejsc_70042
crossref_primary_10_1016_j_psychres_2025_116353
crossref_primary_10_32604_cmc_2020_011969
crossref_primary_10_1111_exsy_13111
crossref_primary_10_7717_peerj_cs_850
crossref_primary_10_1016_j_neucom_2021_10_079
crossref_primary_10_1080_1062936X_2023_2278074
crossref_primary_10_1016_j_neucom_2023_126585
crossref_primary_10_1186_s12889_024_17978_0
crossref_primary_10_1016_j_future_2023_01_027
crossref_primary_10_7717_peerj_cs_2306
crossref_primary_10_1016_j_eneco_2020_104790
crossref_primary_10_1016_j_envpol_2021_118153
crossref_primary_10_1080_02664763_2020_1815672
crossref_primary_10_1016_j_egyai_2025_100483
crossref_primary_10_1016_j_ejrad_2024_111297
crossref_primary_10_3390_agriculture13030596
crossref_primary_10_1007_s00170_024_14543_2
crossref_primary_10_1016_j_inffus_2023_101959
crossref_primary_10_1111_1752_1688_13186
crossref_primary_10_1016_j_patcog_2022_109096
crossref_primary_10_1109_TGRS_2023_3333689
crossref_primary_10_1016_j_compbiomed_2025_110472
crossref_primary_10_1016_j_knosys_2022_110249
crossref_primary_10_1080_09599916_2019_1587489
crossref_primary_10_1007_s11227_025_07021_3
crossref_primary_10_3847_PSJ_ad25fd
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_3390_ijerph182111347
crossref_primary_10_61186_jsdp_22_1_39
crossref_primary_10_1016_j_rvsc_2024_105201
crossref_primary_10_1007_s10462_022_10274_6
crossref_primary_10_1039_D2CY00284A
crossref_primary_10_1088_1612_202X_ab7a9a
crossref_primary_10_1016_j_xfre_2022_04_004
crossref_primary_10_1109_ACCESS_2019_2909945
crossref_primary_10_1371_journal_pone_0289318
crossref_primary_10_3233_IDA_205331
crossref_primary_10_1109_ACCESS_2021_3119404
crossref_primary_10_1002_ange_202502410
crossref_primary_10_1016_j_brs_2021_09_009
crossref_primary_10_1007_s40614_023_00376_z
crossref_primary_10_1088_2040_8986_abfee0
crossref_primary_10_1111_mice_12992
crossref_primary_10_1016_j_jallcom_2023_172994
crossref_primary_10_1007_s41315_022_00244_0
crossref_primary_10_3390_app13021143
crossref_primary_10_1155_2022_1562942
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_3390_math12030372
crossref_primary_10_1007_s00521_022_07869_z
crossref_primary_10_1016_j_jece_2025_118842
crossref_primary_10_1016_j_ultras_2022_106854
crossref_primary_10_1051_itmconf_20257003020
crossref_primary_10_1016_j_rineng_2025_105629
crossref_primary_10_15446_dyna_v87n212_80202
crossref_primary_10_3390_biomedicines10092220
crossref_primary_10_1109_TETCI_2024_3451695
crossref_primary_10_1016_j_radonc_2025_110872
crossref_primary_10_1016_j_isprsjprs_2024_08_015
crossref_primary_10_1109_TKDE_2023_3332671
crossref_primary_10_1093_nargab_lqae184
crossref_primary_10_1007_s11831_020_09524_z
crossref_primary_10_3390_rs13030531
crossref_primary_10_3390_s24175752
crossref_primary_10_1016_j_asoc_2022_109046
crossref_primary_10_3390_app11094117
crossref_primary_10_1007_s40747_021_00521_8
crossref_primary_10_1016_j_addma_2022_102621
crossref_primary_10_1016_j_ins_2023_120059
crossref_primary_10_1016_j_measurement_2023_112465
crossref_primary_10_1109_ACCESS_2022_3191115
crossref_primary_10_3390_sym15101834
crossref_primary_10_1016_j_neuroimage_2022_119787
crossref_primary_10_1016_j_bspc_2024_106795
crossref_primary_10_1080_09377255_2025_2538005
crossref_primary_10_3390_s22062206
crossref_primary_10_1007_s42484_024_00213_9
crossref_primary_10_1016_j_patcog_2022_108912
crossref_primary_10_1109_ACCESS_2018_2878855
crossref_primary_10_1016_j_techfore_2020_120175
crossref_primary_10_1051_jnwpu_20203830471
crossref_primary_10_3390_drones8020061
crossref_primary_10_1155_2021_9294356
crossref_primary_10_2166_wst_2024_142
crossref_primary_10_1371_journal_pcbi_1011649
crossref_primary_10_1016_j_imu_2019_100255
crossref_primary_10_1109_ACCESS_2023_3287326
crossref_primary_10_1021_acs_chemrestox_4c00523
crossref_primary_10_1371_journal_pone_0220842
crossref_primary_10_1007_s11356_025_36582_2
crossref_primary_10_1186_s12911_024_02590_4
crossref_primary_10_1007_s41870_023_01271_1
crossref_primary_10_1016_j_asoc_2020_106426
crossref_primary_10_1016_j_fss_2020_03_003
crossref_primary_10_1016_j_scs_2020_102320
crossref_primary_10_1016_j_jweia_2021_104788
crossref_primary_10_1155_2022_2893486
crossref_primary_10_3390_info16010034
crossref_primary_10_2478_amns_2025_0805
crossref_primary_10_1007_s10489_020_01800_6
crossref_primary_10_1007_s12553_023_00732_8
crossref_primary_10_1016_j_jsv_2023_117769
crossref_primary_10_1086_731788
crossref_primary_10_3390_s24227193
crossref_primary_10_1016_j_cscm_2023_e02554
crossref_primary_10_1038_s41598_025_10296_4
crossref_primary_10_3390_e22080876
crossref_primary_10_1080_10095020_2025_2542969
crossref_primary_10_1007_s11042_022_12161_2
crossref_primary_10_1109_ACCESS_2020_2990375
crossref_primary_10_3390_s22030907
crossref_primary_10_1007_s00500_022_07234_1
crossref_primary_10_1016_j_measurement_2023_113335
crossref_primary_10_1016_j_compag_2022_107275
crossref_primary_10_1016_j_compind_2020_103345
crossref_primary_10_1002_adma_202208683
crossref_primary_10_1093_jbmr_zjaf105
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_3390_ijerph17030731
crossref_primary_10_1111_ppa_13902
crossref_primary_10_3390_info15100593
crossref_primary_10_1038_s41598_025_93417_3
crossref_primary_10_1108_IJPCC_04_2020_0018
crossref_primary_10_1186_s12876_024_03223_w
crossref_primary_10_1002_hsr2_70327
crossref_primary_10_1007_s00521_024_10166_6
crossref_primary_10_1038_s41598_023_48418_5
crossref_primary_10_1016_j_rse_2020_112105
crossref_primary_10_1080_09613218_2023_2204418
crossref_primary_10_3390_rs17060988
crossref_primary_10_1016_j_tust_2024_105945
crossref_primary_10_1016_j_oceaneng_2023_115277
crossref_primary_10_3390_machines12060368
crossref_primary_10_1016_j_eswa_2022_117520
crossref_primary_10_1016_j_engfailanal_2022_106248
crossref_primary_10_1016_j_uclim_2024_101903
crossref_primary_10_3390_ma16145036
crossref_primary_10_1007_s00521_022_07669_5
crossref_primary_10_1093_jcde_qwac028
crossref_primary_10_3390_cancers14163914
crossref_primary_10_1371_journal_pdig_0000780
crossref_primary_10_1016_j_trc_2019_03_004
crossref_primary_10_3390_healthcare11030319
crossref_primary_10_1155_2022_1693365
crossref_primary_10_1016_j_chemolab_2021_104396
crossref_primary_10_1109_ACCESS_2023_3307138
crossref_primary_10_1016_j_ress_2024_110387
crossref_primary_10_1038_s41598_025_06426_7
crossref_primary_10_1016_j_compbiomed_2020_103667
crossref_primary_10_1109_ACCESS_2021_3073261
crossref_primary_10_1016_j_cmpb_2021_106038
crossref_primary_10_1007_s13042_022_01589_5
crossref_primary_10_1016_j_ecoinf_2024_102832
crossref_primary_10_32604_cmc_2022_026619
crossref_primary_10_1007_s13755_021_00164_6
crossref_primary_10_1016_j_aiig_2025_100144
crossref_primary_10_1007_s11665_025_11115_7
crossref_primary_10_1016_j_asoc_2019_105859
crossref_primary_10_1002_eqe_4068
crossref_primary_10_1016_j_matpr_2021_04_643
crossref_primary_10_1016_j_mtener_2024_101769
crossref_primary_10_1007_s11517_020_02301_x
crossref_primary_10_3390_make3020020
crossref_primary_10_3389_fbuil_2024_1343398
crossref_primary_10_1016_j_engappai_2022_105728
crossref_primary_10_1016_j_eswa_2019_113024
crossref_primary_10_1007_s11356_024_34440_1
crossref_primary_10_1016_j_knosys_2020_106365
crossref_primary_10_2196_19679
crossref_primary_10_1109_ACCESS_2021_3097206
crossref_primary_10_3390_app8101927
crossref_primary_10_1007_s10462_022_10195_4
crossref_primary_10_3390_ijms26062428
crossref_primary_10_3390_math12010113
crossref_primary_10_3390_sym12010067
crossref_primary_10_1007_s10489_021_03008_8
crossref_primary_10_1016_j_ibmed_2025_100255
crossref_primary_10_1016_j_jastp_2025_106448
crossref_primary_10_1038_s41598_025_03688_z
crossref_primary_10_1109_ACCESS_2024_3352070
crossref_primary_10_1007_s00500_025_10530_1
crossref_primary_10_3390_batteries11090322
crossref_primary_10_1016_j_suscom_2022_100838
crossref_primary_10_1016_j_cose_2021_102414
crossref_primary_10_3389_fphar_2020_00639
crossref_primary_10_3390_s18124425
crossref_primary_10_1016_j_suronc_2024_102079
crossref_primary_10_1016_j_neucom_2024_128427
crossref_primary_10_3390_app142210532
crossref_primary_10_1016_j_sab_2019_105721
crossref_primary_10_1109_TII_2024_3507944
crossref_primary_10_1007_s10479_021_04415_3
crossref_primary_10_1007_s10044_020_00916_2
crossref_primary_10_3390_ijgi9040227
crossref_primary_10_1016_j_chroma_2023_464467
crossref_primary_10_3389_fmicb_2020_623788
crossref_primary_10_1021_acs_analchem_4c06762
crossref_primary_10_1016_j_ress_2021_108290
crossref_primary_10_1109_ACCESS_2024_3523864
crossref_primary_10_1016_j_chemolab_2023_104989
crossref_primary_10_3233_JIFS_213112
crossref_primary_10_1080_0952813X_2023_2183273
crossref_primary_10_1007_s12145_023_00951_7
crossref_primary_10_1016_j_jenvman_2024_120559
crossref_primary_10_1080_0951192X_2022_2027019
crossref_primary_10_23876_j_krcp_25_046
crossref_primary_10_3390_ijerph21111474
crossref_primary_10_1016_j_cirp_2019_03_008
crossref_primary_10_3390_s21175753
crossref_primary_10_1016_j_envpol_2021_117711
crossref_primary_10_1016_j_media_2022_102368
crossref_primary_10_1007_s00521_024_10171_9
crossref_primary_10_1109_ACCESS_2022_3193935
crossref_primary_10_3233_IDA_205154
crossref_primary_10_3390_atmos13071055
crossref_primary_10_1088_1755_1315_655_1_012025
crossref_primary_10_1049_cit2_12327
crossref_primary_10_1016_j_engappai_2020_103557
crossref_primary_10_1016_j_trac_2022_116859
crossref_primary_10_1007_s10311_024_01700_y
crossref_primary_10_1016_j_trac_2022_116863
crossref_primary_10_1080_00207543_2024_2384597
crossref_primary_10_1016_j_jer_2024_02_018
crossref_primary_10_1016_j_energy_2022_123255
crossref_primary_10_3389_fimmu_2023_1137850
crossref_primary_10_1371_journal_pcbi_1010718
crossref_primary_10_3390_app15158196
crossref_primary_10_1186_s12859_022_04962_x
crossref_primary_10_1016_j_urbmob_2025_100104
crossref_primary_10_1177_0047287520934871
crossref_primary_10_1007_s10489_019_01513_5
crossref_primary_10_1016_j_resconrec_2020_105381
crossref_primary_10_1007_s13755_023_00251_w
crossref_primary_10_1080_09544828_2018_1463514
crossref_primary_10_1016_j_engappai_2023_107168
crossref_primary_10_3389_fcimb_2022_882995
crossref_primary_10_3390_healthcare10071256
crossref_primary_10_1007_s11707_020_0848_7
crossref_primary_10_1017_S0033291724000862
crossref_primary_10_1088_1742_6596_2703_1_012031
crossref_primary_10_1080_24705314_2023_2230398
crossref_primary_10_1016_j_cmpb_2024_108477
crossref_primary_10_1016_j_knosys_2025_113940
crossref_primary_10_1145_3588961
crossref_primary_10_1088_1757_899X_919_4_042018
crossref_primary_10_1016_j_conbuildmat_2023_130670
crossref_primary_10_1007_s44163_025_00224_w
crossref_primary_10_1002_clc_23963
crossref_primary_10_1007_s00500_019_03911_w
crossref_primary_10_1088_1742_6596_1299_1_012035
crossref_primary_10_3390_rs17162843
crossref_primary_10_1016_j_knosys_2023_111163
crossref_primary_10_1016_j_jag_2023_103446
crossref_primary_10_1016_j_knosys_2021_107326
crossref_primary_10_1109_ACCESS_2020_2966017
crossref_primary_10_1016_j_conbuildmat_2021_124894
crossref_primary_10_1016_j_cortex_2024_11_022
crossref_primary_10_1016_j_jhydrol_2025_133237
crossref_primary_10_1007_s00521_020_05321_8
crossref_primary_10_1145_3639063
crossref_primary_10_1016_j_ecoinf_2021_101231
crossref_primary_10_1088_1361_648X_abb895
crossref_primary_10_1007_s10489_021_02257_x
crossref_primary_10_1016_j_heliyon_2023_e19525
crossref_primary_10_1061_JWRMD5_WRENG_5620
crossref_primary_10_1155_2022_5728880
crossref_primary_10_3390_agronomy13030792
crossref_primary_10_1111_tgis_70028
crossref_primary_10_1016_j_eswa_2020_113859
crossref_primary_10_1002_anie_202502410
crossref_primary_10_1371_journal_pone_0218760
crossref_primary_10_1002_idm2_12180
crossref_primary_10_1038_s41598_024_55902_z
crossref_primary_10_1155_2021_5069016
crossref_primary_10_1109_ACCESS_2022_3153038
crossref_primary_10_1016_j_heliyon_2024_e27411
crossref_primary_10_1109_TCBB_2022_3149864
crossref_primary_10_3390_ijerph19031858
crossref_primary_10_1007_s42452_024_06444_6
crossref_primary_10_1140_epjds_s13688_024_00512_y
crossref_primary_10_1016_j_ecoinf_2025_103166
crossref_primary_10_1155_2022_4986826
crossref_primary_10_3390_su132212746
crossref_primary_10_3389_fmed_2021_635771
crossref_primary_10_1016_j_buildenv_2023_110722
crossref_primary_10_1109_ACCESS_2019_2957779
crossref_primary_10_1016_j_asoc_2024_112234
crossref_primary_10_1016_j_eswa_2022_117116
crossref_primary_10_1016_j_ijleo_2022_170340
crossref_primary_10_15857_ksep_2021_30_2_131
crossref_primary_10_1007_s10270_021_00920_y
crossref_primary_10_1007_s10462_021_10072_6
crossref_primary_10_1007_s10919_020_00332_4
crossref_primary_10_1016_j_scitotenv_2024_171733
crossref_primary_10_2478_ijcss_2022_0007
crossref_primary_10_3390_math10122039
crossref_primary_10_1016_j_specom_2023_102960
crossref_primary_10_1016_j_knosys_2025_113978
crossref_primary_10_1007_s11356_023_26611_3
crossref_primary_10_1089_met_2019_0052
crossref_primary_10_1007_s43674_021_00008_6
crossref_primary_10_1038_s41545_025_00504_z
crossref_primary_10_1016_j_rineng_2025_105693
crossref_primary_10_1016_j_trac_2021_116372
crossref_primary_10_32604_cmc_2023_038045
crossref_primary_10_1007_s13369_021_06456_z
crossref_primary_10_1016_j_apenergy_2023_122413
crossref_primary_10_3389_fnhum_2021_700627
crossref_primary_10_5772_acrt_01
crossref_primary_10_1016_j_rser_2025_115817
crossref_primary_10_1080_13632469_2024_2400194
crossref_primary_10_2174_0126662558324883241011101625
crossref_primary_10_1109_JBHI_2019_2953978
crossref_primary_10_3390_ma17081793
crossref_primary_10_3390_app13074119
crossref_primary_10_3390_atmos12020238
crossref_primary_10_1016_j_jenvman_2021_113344
crossref_primary_10_3390_math10040553
crossref_primary_10_1080_08839514_2022_2138124
crossref_primary_10_1016_j_agwat_2024_109059
crossref_primary_10_1016_j_talanta_2023_125021
crossref_primary_10_1155_2022_9261713
crossref_primary_10_1016_j_asoc_2021_108006
crossref_primary_10_1007_s11831_025_10284_x
crossref_primary_10_3390_e21060602
crossref_primary_10_1007_s10462_023_10546_9
crossref_primary_10_1016_j_jag_2025_104725
crossref_primary_10_1007_s10462_020_09860_3
crossref_primary_10_1016_j_fecs_2025_100368
crossref_primary_10_1016_j_measen_2024_101291
crossref_primary_10_1177_14759217221111141
crossref_primary_10_1177_14759217231166116
crossref_primary_10_1016_j_ecolind_2024_111693
crossref_primary_10_1016_j_jneumeth_2020_108853
crossref_primary_10_3390_rs14092086
crossref_primary_10_1016_j_compag_2023_107929
crossref_primary_10_3390_en13205369
crossref_primary_10_1016_j_measurement_2021_109145
crossref_primary_10_1007_s00234_019_02266_1
crossref_primary_10_1016_j_asoc_2024_112574
crossref_primary_10_1080_03081079_2023_2206654
crossref_primary_10_3233_IDA_215826
crossref_primary_10_1016_j_inffus_2025_103152
crossref_primary_10_3390_app14031023
crossref_primary_10_1007_s12264_024_01312_0
crossref_primary_10_1016_j_imu_2021_100564
crossref_primary_10_1016_j_imu_2022_100863
crossref_primary_10_1016_j_bspc_2023_105869
crossref_primary_10_1177_14604582241285769
crossref_primary_10_1016_j_ins_2023_119502
crossref_primary_10_1016_j_knosys_2022_109529
crossref_primary_10_1109_TNSE_2025_3553442
crossref_primary_10_1007_s10549_024_07375_x
crossref_primary_10_1016_j_health_2022_100060
crossref_primary_10_1016_j_jbi_2024_104699
crossref_primary_10_1016_j_medengphy_2021_05_017
crossref_primary_10_1109_JIOT_2020_3016297
crossref_primary_10_1016_j_compbiomed_2024_109539
crossref_primary_10_1093_jrr_rrad052
crossref_primary_10_1155_2022_3878072
crossref_primary_10_1016_j_pmatsci_2023_101085
crossref_primary_10_1109_ACCESS_2020_3028469
crossref_primary_10_2166_hydro_2023_170
crossref_primary_10_1007_s10115_024_02258_5
crossref_primary_10_1016_j_bbi_2024_12_007
crossref_primary_10_1109_JSEN_2022_3155706
crossref_primary_10_3390_app12188974
crossref_primary_10_3390_fire7090296
crossref_primary_10_1007_s10853_022_07132_9
crossref_primary_10_1016_j_patcog_2025_111477
crossref_primary_10_1155_2023_5585130
crossref_primary_10_1016_j_compind_2022_103634
crossref_primary_10_1186_s44167_024_00045_9
crossref_primary_10_1007_s11042_025_20707_3
crossref_primary_10_1016_j_engappai_2024_108834
crossref_primary_10_1016_j_est_2024_113556
crossref_primary_10_2478_amns_2025_0135
crossref_primary_10_1016_j_bspc_2023_105850
crossref_primary_10_3389_fmicb_2021_763498
crossref_primary_10_3390_biomimetics8050417
crossref_primary_10_1155_2020_8571712
crossref_primary_10_1109_ACCESS_2022_3211505
crossref_primary_10_1016_j_jhydrol_2025_134255
crossref_primary_10_1016_j_compag_2022_106997
crossref_primary_10_1002_int_23044
crossref_primary_10_1016_j_heliyon_2023_e17982
crossref_primary_10_3390_biomimetics9080501
crossref_primary_10_1016_j_prrv_2021_06_002
crossref_primary_10_1007_s00603_025_04807_y
crossref_primary_10_1007_s11219_023_09636_2
crossref_primary_10_1111_exsy_12527
crossref_primary_10_1007_s00382_021_06104_0
crossref_primary_10_2186_jpr_JPR_D_24_00250
crossref_primary_10_3390_math10040589
crossref_primary_10_1016_j_cities_2024_105115
crossref_primary_10_33889_IJMEMS_2025_10_5_077
crossref_primary_10_1016_j_heliyon_2024_e24797
crossref_primary_10_1109_ACCESS_2022_3177752
crossref_primary_10_1109_TNSRE_2023_3326065
crossref_primary_10_7717_peerj_cs_1997
crossref_primary_10_1021_acs_iecr_5c01985
crossref_primary_10_1021_acs_jpclett_5c01616
crossref_primary_10_1109_ACCESS_2019_2929487
crossref_primary_10_1007_s11666_021_01198_8
crossref_primary_10_1186_s43067_023_00101_5
crossref_primary_10_1186_s13040_021_00240_3
crossref_primary_10_1109_TIM_2023_3303233
crossref_primary_10_1088_2632_2153_ad513a
crossref_primary_10_3389_fgene_2020_595912
crossref_primary_10_3390_s22103700
crossref_primary_10_1016_j_envres_2024_118146
crossref_primary_10_1016_j_autcon_2023_105058
crossref_primary_10_1016_j_engappai_2023_107425
crossref_primary_10_1109_ACCESS_2020_3004699
crossref_primary_10_3847_1538_4365_acf218
crossref_primary_10_1080_02648725_2023_2202524
crossref_primary_10_1007_s00521_025_11163_z
crossref_primary_10_1007_s00500_020_05045_w
crossref_primary_10_1007_s12065_021_00608_8
crossref_primary_10_1007_s00500_025_10913_4
crossref_primary_10_1155_2022_5415702
crossref_primary_10_1177_14759217251313815
crossref_primary_10_3390_app131810221
crossref_primary_10_3390_electronics12061508
crossref_primary_10_1016_j_biortech_2025_132968
crossref_primary_10_1109_ACCESS_2022_3190502
crossref_primary_10_1016_j_commatsci_2024_113024
crossref_primary_10_1016_j_jhydrol_2024_130628
crossref_primary_10_2118_208579_PA
crossref_primary_10_1109_ACCESS_2021_3126834
crossref_primary_10_1093_bib_bbab354
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1039_D5CS00053J
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_1002_for_3284
crossref_primary_10_1007_s13042_024_02111_9
crossref_primary_10_1016_j_sysarc_2025_103536
crossref_primary_10_1155_2022_5034976
crossref_primary_10_1155_2021_3457967
crossref_primary_10_3390_rs13234832
crossref_primary_10_1016_j_asoc_2024_111426
crossref_primary_10_1093_bjr_tqaf051
crossref_primary_10_1155_2023_9713905
crossref_primary_10_3390_rs13030389
crossref_primary_10_1007_s10207_023_00790_z
crossref_primary_10_1016_j_enbuild_2025_115991
crossref_primary_10_1038_s41598_024_69954_8
crossref_primary_10_3390_app14219870
crossref_primary_10_1016_j_eswa_2019_01_016
crossref_primary_10_1016_j_engappai_2021_104455
crossref_primary_10_1016_j_cjche_2020_10_044
crossref_primary_10_1088_2632_959X_ad4c80
crossref_primary_10_1155_2020_2860479
crossref_primary_10_62184_mmc_jmmc110020251
crossref_primary_10_1007_s11334_024_00581_2
crossref_primary_10_1016_j_ccr_2024_216329
crossref_primary_10_1016_j_compbiomed_2022_105639
crossref_primary_10_1111_exsy_13400
crossref_primary_10_1016_j_eswa_2022_117064
crossref_primary_10_1016_j_jag_2024_104202
crossref_primary_10_3390_ai3010001
crossref_primary_10_3390_app12199413
crossref_primary_10_1186_s12872_025_04550_w
crossref_primary_10_1109_TEVC_2023_3238420
crossref_primary_10_1093_nsr_nwad125
crossref_primary_10_1002_clen_70039
crossref_primary_10_1007_s10115_025_02340_6
crossref_primary_10_1007_s42452_024_06440_w
crossref_primary_10_4018_IJSSMET_2020070104
crossref_primary_10_3390_machines10020072
crossref_primary_10_3390_en15103485
crossref_primary_10_1016_j_compbiomed_2024_109590
crossref_primary_10_1109_ACCESS_2021_3094735
crossref_primary_10_1016_j_artmed_2024_102991
crossref_primary_10_1080_10106049_2020_1831622
crossref_primary_10_1016_j_eswa_2025_127535
crossref_primary_10_1038_s41386_025_02176_2
crossref_primary_10_1007_s41060_024_00668_w
crossref_primary_10_1016_j_jksuci_2020_05_002
crossref_primary_10_1007_s13042_019_00968_9
crossref_primary_10_1016_j_ipm_2023_103370
crossref_primary_10_3233_IDA_226551
crossref_primary_10_1093_tse_tdad014
crossref_primary_10_1109_ACCESS_2020_2985414
crossref_primary_10_1162_netn_a_00447
crossref_primary_10_1016_j_oceaneng_2025_122713
crossref_primary_10_1109_ACCESS_2024_3467049
crossref_primary_10_3389_fmolb_2023_1094321
crossref_primary_10_3390_computers12100195
crossref_primary_10_3390_app14051960
crossref_primary_10_1155_2020_1958149
crossref_primary_10_1016_j_compstruct_2019_111698
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_1016_j_ijepes_2025_110526
crossref_primary_10_1016_j_asoc_2023_110959
crossref_primary_10_1016_j_ipl_2023_106407
crossref_primary_10_1016_j_neucom_2022_11_023
crossref_primary_10_3390_app15073718
crossref_primary_10_1016_j_ins_2022_01_008
crossref_primary_10_1007_s10666_025_10061_x
crossref_primary_10_1186_s12864_024_10668_6
crossref_primary_10_1063_5_0228503
crossref_primary_10_3390_rs15112826
crossref_primary_10_1016_j_neucom_2022_04_083
crossref_primary_10_3390_app11062458
crossref_primary_10_1155_2024_4853773
crossref_primary_10_3390_app13148511
crossref_primary_10_1002_cam4_5420
crossref_primary_10_1186_s12911_023_02154_y
crossref_primary_10_3390_axioms11050223
crossref_primary_10_3390_toxics11120955
crossref_primary_10_1016_j_ins_2018_12_033
crossref_primary_10_1109_ACCESS_2020_2976947
crossref_primary_10_1080_24751448_2024_2313443
crossref_primary_10_1007_s11276_024_03736_y
crossref_primary_10_3390_agronomy14122940
crossref_primary_10_1007_s40747_021_00384_z
crossref_primary_10_1016_j_fuel_2024_131694
crossref_primary_10_1371_journal_pone_0280648
crossref_primary_10_1016_j_jasrep_2025_105107
crossref_primary_10_1186_s12911_025_03116_2
crossref_primary_10_3390_app11041742
crossref_primary_10_1007_s00226_020_01184_3
crossref_primary_10_1080_09537287_2022_2157776
crossref_primary_10_1186_s13036_022_00319_3
crossref_primary_10_1109_TUFFC_2023_3278494
crossref_primary_10_1007_s00521_021_06125_0
crossref_primary_10_3390_electronics10151818
crossref_primary_10_1016_j_knosys_2023_110640
crossref_primary_10_1016_j_jhydrol_2023_130141
crossref_primary_10_1080_15376516_2024_2387733
crossref_primary_10_1080_00140139_2024_2430370
crossref_primary_10_1016_j_ins_2023_119910
crossref_primary_10_1109_TC_2025_3576941
crossref_primary_10_1109_ACCESS_2021_3116201
crossref_primary_10_3390_rs13132592
crossref_primary_10_1177_20552076241272739
crossref_primary_10_52294_001c_117311
crossref_primary_10_1016_j_autcon_2022_104714
crossref_primary_10_1007_s10489_024_05288_2
crossref_primary_10_1016_j_enbuild_2024_115007
crossref_primary_10_1038_s41598_025_95019_5
crossref_primary_10_1109_ACCESS_2025_3546720
crossref_primary_10_1016_j_heares_2022_108667
crossref_primary_10_1016_j_eswa_2024_125084
crossref_primary_10_3390_info15100625
crossref_primary_10_1016_j_ifacol_2020_12_2855
crossref_primary_10_1016_j_neucom_2022_11_013
crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_1108_SASBE_02_2024_0059
crossref_primary_10_3389_fmicb_2021_694534
crossref_primary_10_1186_s12911_023_02167_7
crossref_primary_10_3390_e25020325
crossref_primary_10_1155_2022_3397972
crossref_primary_10_1016_j_seppur_2025_134358
crossref_primary_10_1007_s13042_025_02781_z
crossref_primary_10_1016_j_eswa_2021_115224
crossref_primary_10_1016_j_buildenv_2023_110157
crossref_primary_10_3390_agriculture10090400
crossref_primary_10_7717_peerj_cs_944
crossref_primary_10_1007_s11063_023_11256_7
crossref_primary_10_1007_s12008_022_01006_9
crossref_primary_10_1007_s10115_020_01519_3
crossref_primary_10_1109_TED_2023_3288842
crossref_primary_10_3389_fpsyg_2024_1447968
crossref_primary_10_1016_j_neucom_2018_09_077
crossref_primary_10_1186_s13634_022_00939_3
crossref_primary_10_3390_sym14101955
crossref_primary_10_1007_s12065_019_00293_8
crossref_primary_10_1016_j_compag_2025_110213
crossref_primary_10_3390_ijms25189844
crossref_primary_10_1007_s10661_024_13506_0
crossref_primary_10_3390_genes15050603
crossref_primary_10_1016_j_apenergy_2023_122079
crossref_primary_10_1109_TNNLS_2021_3131234
crossref_primary_10_1016_j_eswa_2022_117923
crossref_primary_10_1016_j_jnca_2022_103464
crossref_primary_10_1016_j_asoc_2023_110765
crossref_primary_10_1016_j_knosys_2023_110697
crossref_primary_10_1016_j_precisioneng_2024_07_006
crossref_primary_10_3233_JIFS_200653
crossref_primary_10_1007_s11270_024_06913_z
crossref_primary_10_1016_j_cja_2024_10_019
crossref_primary_10_1016_j_renene_2023_118994
crossref_primary_10_1038_s43856_021_00020_4
crossref_primary_10_1016_j_eswa_2023_120152
crossref_primary_10_1016_j_commatsci_2024_113423
crossref_primary_10_1080_19942060_2021_1972043
crossref_primary_10_3390_s23010098
crossref_primary_10_3390_atmos13111832
crossref_primary_10_1002_cpe_7282
crossref_primary_10_1016_j_patcog_2024_110436
crossref_primary_10_1111_nph_18053
crossref_primary_10_1364_JOCN_560757
crossref_primary_10_1109_TIM_2022_3193407
crossref_primary_10_1186_s40537_021_00415_z
crossref_primary_10_1007_s13762_019_02485_2
crossref_primary_10_1016_j_eswa_2022_116822
crossref_primary_10_1016_j_afres_2025_100767
crossref_primary_10_1109_TGRS_2023_3284475
crossref_primary_10_3389_fphar_2020_606668
crossref_primary_10_1007_s12145_025_01841_w
crossref_primary_10_1108_TQM_09_2023_0302
crossref_primary_10_3390_sym11111423
crossref_primary_10_1016_j_adhoc_2023_103180
crossref_primary_10_1109_ACCESS_2019_2948159
crossref_primary_10_3233_JIFS_222401
crossref_primary_10_1007_s11356_023_27382_7
crossref_primary_10_1108_K_12_2022_1676
crossref_primary_10_1016_j_eswa_2021_115678
crossref_primary_10_1080_1062936X_2024_2378797
crossref_primary_10_1016_j_ijar_2021_09_016
crossref_primary_10_3390_inventions7010015
crossref_primary_10_1016_j_bspc_2022_104417
crossref_primary_10_1007_s11665_025_11096_7
crossref_primary_10_1177_00332941251343544
crossref_primary_10_1155_2021_9947059
crossref_primary_10_1038_s41598_024_53170_5
crossref_primary_10_1017_dce_2020_14
crossref_primary_10_1109_TNSRE_2021_3113888
crossref_primary_10_1007_s00521_022_07254_w
crossref_primary_10_1016_j_measurement_2020_108461
crossref_primary_10_1016_j_algal_2025_104155
crossref_primary_10_1080_23311916_2025_2467153
crossref_primary_10_1186_s42774_021_00088_5
crossref_primary_10_1007_s10853_025_11197_7
crossref_primary_10_2139_ssrn_3788349
crossref_primary_10_1016_j_eswa_2023_121398
crossref_primary_10_35234_fumbd_1501652
crossref_primary_10_1094_PHYTO_05_20_0185_R
crossref_primary_10_1177_20552076251333660
crossref_primary_10_1186_s12958_024_01285_9
crossref_primary_10_3390_s24010155
crossref_primary_10_1007_s12145_024_01592_0
crossref_primary_10_3390_rs14020378
crossref_primary_10_3390_rs16122229
crossref_primary_10_1080_15366367_2023_2246111
crossref_primary_10_1109_TMI_2022_3177626
crossref_primary_10_1007_s41060_020_00234_0
crossref_primary_10_1007_s13042_024_02108_4
crossref_primary_10_3389_fninf_2021_663592
crossref_primary_10_1007_s13346_023_01510_9
crossref_primary_10_1007_s11356_024_32807_y
crossref_primary_10_1016_j_comnet_2023_110093
crossref_primary_10_1016_j_eswa_2021_115130
crossref_primary_10_1080_10106049_2023_2252781
crossref_primary_10_1016_j_asoc_2019_105924
crossref_primary_10_1016_j_ibmed_2025_100199
crossref_primary_10_1155_2024_5653690
crossref_primary_10_1016_j_impact_2025_100563
crossref_primary_10_1016_j_procs_2024_08_027
crossref_primary_10_1016_j_jaap_2021_105352
crossref_primary_10_1038_s41598_024_56820_w
crossref_primary_10_3390_atmos13101672
crossref_primary_10_3390_electronics13122242
crossref_primary_10_1016_j_aei_2024_102852
crossref_primary_10_1155_2021_1676197
crossref_primary_10_1186_s12911_022_02051_w
crossref_primary_10_1016_j_asoc_2019_105936
crossref_primary_10_1016_j_knosys_2021_107418
crossref_primary_10_3390_sym13101764
crossref_primary_10_1007_s11042_023_17724_5
crossref_primary_10_1080_10298436_2021_2001814
crossref_primary_10_1088_1742_6596_2273_1_012002
crossref_primary_10_1016_j_neucom_2022_10_053
crossref_primary_10_1186_s12872_025_04786_6
crossref_primary_10_3389_fimmu_2022_1027631
crossref_primary_10_1016_j_ecoinf_2024_102768
crossref_primary_10_1016_j_vascn_2020_106894
crossref_primary_10_1109_LCSYS_2020_3006428
crossref_primary_10_3390_metabo13121204
crossref_primary_10_3390_electronics11010114
crossref_primary_10_1016_j_ymssp_2023_110796
crossref_primary_10_1002_widm_70043
crossref_primary_10_1155_2021_8783899
crossref_primary_10_1088_1755_1315_1274_1_012008
crossref_primary_10_1016_j_csda_2019_106839
crossref_primary_10_1007_s10796_023_10431_4
crossref_primary_10_1007_s42979_025_03982_7
crossref_primary_10_1016_j_asoc_2020_106552
crossref_primary_10_1007_s10115_023_02010_5
crossref_primary_10_1016_j_ijrefrig_2024_01_006
crossref_primary_10_1109_TCYB_2021_3087776
crossref_primary_10_3390_f13020160
crossref_primary_10_3233_THC_230161
crossref_primary_10_1016_j_rcim_2021_102281
crossref_primary_10_1016_j_jece_2025_117826
crossref_primary_10_1155_2020_2350627
crossref_primary_10_1155_2021_5046244
crossref_primary_10_3389_fonc_2022_819673
crossref_primary_10_1016_j_apenergy_2024_123314
crossref_primary_10_1016_j_measurement_2025_117785
crossref_primary_10_1007_s13042_020_01180_w
crossref_primary_10_1109_ACCESS_2022_3182543
crossref_primary_10_1007_s11227_023_05290_4
crossref_primary_10_1108_IJOA_03_2021_2684
crossref_primary_10_1016_j_asoc_2021_107993
crossref_primary_10_1007_s11227_023_05444_4
crossref_primary_10_3390_math10224268
crossref_primary_10_1016_j_patrec_2021_04_025
crossref_primary_10_1109_JBHI_2022_3212475
crossref_primary_10_1007_s13369_021_05486_x
crossref_primary_10_1155_2022_9113683
crossref_primary_10_1007_s00521_024_10350_8
crossref_primary_10_3390_app9204257
crossref_primary_10_1109_JBHI_2022_3212479
crossref_primary_10_3390_buildings12101505
crossref_primary_10_1016_j_jmapro_2025_07_083
crossref_primary_10_1155_2021_5554873
crossref_primary_10_1016_j_ins_2019_06_063
crossref_primary_10_1186_s12989_023_00530_0
crossref_primary_10_3389_fnhum_2023_1205881
crossref_primary_10_1016_j_imavis_2024_105064
crossref_primary_10_14778_3611540_3611550
crossref_primary_10_1016_j_coal_2022_104054
crossref_primary_10_3390_e21040346
crossref_primary_10_1016_j_jretconser_2023_103513
crossref_primary_10_1089_met_2019_0104
crossref_primary_10_1177_07316844241236696
crossref_primary_10_3390_data6080080
crossref_primary_10_1016_j_csbj_2022_03_019
crossref_primary_10_1016_j_ecoinf_2024_102954
crossref_primary_10_1007_s12145_025_01938_2
crossref_primary_10_1007_s11063_021_10479_w
crossref_primary_10_1016_j_jweia_2022_104904
crossref_primary_10_1108_JEIM_01_2019_0017
crossref_primary_10_3390_fi16100368
crossref_primary_10_3390_ijms21062114
crossref_primary_10_3390_met14040400
crossref_primary_10_1080_08839514_2021_2001178
crossref_primary_10_1016_j_asr_2023_07_064
crossref_primary_10_1016_j_knosys_2021_107633
crossref_primary_10_1109_JPROC_2020_2977054
crossref_primary_10_1155_2022_5191929
crossref_primary_10_3389_fenvs_2021_809995
crossref_primary_10_3390_diagnostics13081506
crossref_primary_10_3390_bs12050128
crossref_primary_10_3390_atmos13091412
crossref_primary_10_1016_j_ins_2024_120277
crossref_primary_10_3390_computers13120328
crossref_primary_10_1016_j_scitotenv_2024_176918
crossref_primary_10_1007_s11356_023_26362_1
crossref_primary_10_1109_TNSM_2023_3249470
crossref_primary_10_1002_minf_202300210
crossref_primary_10_1007_s00500_020_04877_w
crossref_primary_10_3390_land12071287
crossref_primary_10_3390_sym14091916
crossref_primary_10_1093_pnasnexus_pgac039
crossref_primary_10_1155_2022_2941840
crossref_primary_10_1016_j_conbuildmat_2022_130066
crossref_primary_10_1016_j_energy_2025_134781
crossref_primary_10_1016_j_comnet_2023_110005
crossref_primary_10_1007_s13735_021_00210_9
crossref_primary_10_1371_journal_pone_0310840
crossref_primary_10_1007_s13246_025_01593_3
crossref_primary_10_3390_en15239053
crossref_primary_10_1016_j_ins_2021_12_047
crossref_primary_10_1109_ACCESS_2024_3507280
crossref_primary_10_1016_j_apr_2025_102456
crossref_primary_10_1016_j_inffus_2019_09_001
crossref_primary_10_1371_journal_pone_0269195
crossref_primary_10_1016_j_engappai_2024_109510
crossref_primary_10_1038_s41598_025_97938_9
crossref_primary_10_1088_1742_6596_1192_1_012004
crossref_primary_10_1007_s00521_023_08960_9
crossref_primary_10_3390_rs10081319
crossref_primary_10_3390_s23094178
crossref_primary_10_1007_s10489_025_06637_5
crossref_primary_10_1007_s12539_021_00422_x
crossref_primary_10_1016_j_eswa_2024_124568
crossref_primary_10_1051_matecconf_202133607011
crossref_primary_10_1007_s00521_022_07067_x
crossref_primary_10_1016_j_jag_2023_103386
crossref_primary_10_1038_s41598_022_16417_7
crossref_primary_10_1155_2022_6283618
crossref_primary_10_1021_acsami_5c09626
crossref_primary_10_1007_s12613_019_1724_x
crossref_primary_10_1053_j_sodo_2021_05_006
crossref_primary_10_1109_ACCESS_2025_3569271
crossref_primary_10_1186_s12882_023_03084_7
crossref_primary_10_32604_cmes_2023_022699
crossref_primary_10_1109_TFUZZ_2024_3488074
crossref_primary_10_1016_j_compag_2023_108388
crossref_primary_10_3390_rs13050859
crossref_primary_10_1155_2024_5589891
crossref_primary_10_1007_s11814_023_1502_3
crossref_primary_10_1186_s12859_023_05502_x
crossref_primary_10_1007_s11768_021_00077_5
crossref_primary_10_1109_ACCESS_2020_3040980
crossref_primary_10_1186_s12911_023_02192_6
crossref_primary_10_3390_electronics12194158
crossref_primary_10_1007_s13198_024_02327_6
crossref_primary_10_1016_j_saa_2024_125452
crossref_primary_10_3390_met13101641
crossref_primary_10_1109_TNNLS_2021_3105585
crossref_primary_10_1016_j_techfore_2021_121275
crossref_primary_10_1007_s00521_021_05846_6
crossref_primary_10_1016_j_eswa_2021_115191
crossref_primary_10_1038_s41598_023_50742_9
crossref_primary_10_1109_ACCESS_2024_3512878
crossref_primary_10_1038_s41598_020_59981_6
crossref_primary_10_1111_exsy_12925
crossref_primary_10_1007_s11227_023_05163_w
crossref_primary_10_1016_j_knosys_2022_109749
crossref_primary_10_1007_s10462_019_09682_y
crossref_primary_10_1016_j_neucom_2021_12_022
crossref_primary_10_1016_j_neucom_2022_09_009
crossref_primary_10_1016_j_rechem_2025_102730
crossref_primary_10_1016_j_jallcom_2025_182197
crossref_primary_10_1016_j_cose_2025_104478
crossref_primary_10_1016_j_scitotenv_2022_158271
crossref_primary_10_1016_j_ecss_2022_108053
crossref_primary_10_1007_s00500_025_10751_4
crossref_primary_10_1016_j_datak_2023_102176
crossref_primary_10_1109_TGRS_2021_3125323
crossref_primary_10_1016_j_asoc_2022_108964
crossref_primary_10_1007_s13369_024_09183_3
crossref_primary_10_1016_j_eswa_2024_123245
crossref_primary_10_32604_cmc_2022_028055
crossref_primary_10_1007_s41064_024_00323_w
crossref_primary_10_1016_j_jnca_2024_104034
crossref_primary_10_1007_s10916_023_01983_8
crossref_primary_10_1007_s43032_024_01655_z
crossref_primary_10_3390_electronics10020179
crossref_primary_10_1016_j_enconman_2020_113206
crossref_primary_10_3390_app8122548
crossref_primary_10_1007_s00253_022_11963_6
crossref_primary_10_31799_1684_8853_2018_5_2_12
crossref_primary_10_1007_s10639_025_13370_6
crossref_primary_10_3390_e23081011
crossref_primary_10_1007_s11063_021_10557_z
crossref_primary_10_1016_j_jobe_2022_105028
crossref_primary_10_1111_bmsp_12218
crossref_primary_10_1080_14498596_2023_2174196
crossref_primary_10_1002_brb3_70289
crossref_primary_10_1016_j_knosys_2021_107224
crossref_primary_10_1007_s00477_022_02276_1
crossref_primary_10_1016_j_knosys_2020_106097
crossref_primary_10_1016_j_measurement_2022_111177
crossref_primary_10_1016_j_ins_2023_02_068
crossref_primary_10_3390_ijerph18115820
crossref_primary_10_3390_rs15041096
crossref_primary_10_1186_s12859_020_03683_3
crossref_primary_10_1007_s10639_022_11221_2
crossref_primary_10_1016_j_irbm_2020_01_006
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1109_ACCESS_2024_3436088
crossref_primary_10_1016_j_comtox_2023_100266
crossref_primary_10_3233_JIFS_189540
crossref_primary_10_1007_s11831_021_09700_9
crossref_primary_10_1016_j_asoc_2022_108744
crossref_primary_10_1109_ACCESS_2024_3454516
crossref_primary_10_1016_j_petsci_2025_08_011
crossref_primary_10_3390_diagnostics13142323
crossref_primary_10_3390_e25091250
crossref_primary_10_1155_2022_4131058
crossref_primary_10_1007_s13042_022_01633_4
crossref_primary_10_1016_j_chemolab_2023_104807
crossref_primary_10_1016_j_compbiomed_2021_104527
crossref_primary_10_1186_s12911_025_03030_7
crossref_primary_10_1016_j_actatropica_2025_107657
crossref_primary_10_1016_j_frl_2023_104784
crossref_primary_10_1016_j_knosys_2024_111380
crossref_primary_10_1016_j_knosys_2023_111084
crossref_primary_10_1016_j_ress_2019_106706
crossref_primary_10_1155_er_8022398
crossref_primary_10_1016_j_gecco_2025_e03630
crossref_primary_10_1093_schbul_sbae110
crossref_primary_10_1177_20552076231173225
crossref_primary_10_1016_j_conengprac_2020_104673
crossref_primary_10_14358_PERS_21_00006R2
Cites_doi 10.1109/TST.2015.7297748
10.1016/j.patrec.2012.03.017
10.1109/34.481557
10.1109/34.531802
10.1023/A:1010933404324
10.1016/j.neucom.2016.09.123
10.1039/C2MB25327E
10.1016/j.patcog.2009.12.013
10.1093/bioinformatics/btq381
10.1109/TCBB.2013.10
10.1007/s00521-013-1368-0
10.1109/TNN.2010.2047114
10.1016/j.ins.2003.03.019
10.1142/S0218001499000604
10.1109/TPAMI.2005.159
10.1016/j.patrec.2009.10.013
10.1016/j.knosys.2015.05.014
10.3233/ISB-00132
10.1016/S0167-8655(02)00196-4
10.1016/j.ymeth.2016.08.014
10.1109/34.990133
10.1016/j.neucom.2012.10.028
10.1016/j.neucom.2011.03.043
10.1016/j.patcog.2016.11.003
10.1109/TKDE.2013.86
10.1016/j.eswa.2010.12.134
10.1186/1471-2105-13-178
10.1016/j.asoc.2013.09.018
10.1016/j.ins.2011.09.027
10.1016/j.neucom.2007.06.014
10.1016/j.patcog.2010.02.008
10.1109/TCBB.2005.17
10.1016/j.neucom.2017.02.057
10.1016/j.patcog.2014.04.001
10.1198/jasa.2010.tm09415
10.1016/j.neunet.2011.12.002
10.1109/TKDE.2005.66
10.1109/TNN.2008.2004370
10.1016/j.neucom.2012.05.031
10.1016/0031-3203(90)90005-6
10.1016/S0959-1524(03)00029-5
10.1016/j.patcog.2014.06.002
10.1093/biostatistics/kxh010
10.1109/72.298224
10.1109/TKDE.2011.181
10.1016/j.procs.2010.04.273
10.1111/j.1467-9868.2005.00503.x
10.1016/j.patcog.2013.04.021
10.1016/j.eswa.2013.05.051
10.1109/TPAMI.2012.197
10.1109/TCBB.2012.33
10.1016/j.patcog.2007.10.009
10.1126/science.1242072
10.1093/bib/bbs006
10.1109/TIE.2014.2327589
10.1016/j.asoc.2014.01.018
10.1198/016214506000000735
10.1109/TPAMI.1984.4767500
10.1109/TCBB.2015.2478454
10.1016/j.eswa.2011.12.003
10.1016/j.knosys.2008.03.051
10.1016/j.patcog.2011.06.006
10.1016/j.patcog.2008.05.027
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neucom.2012.06.036
10.1016/j.dsp.2004.12.004
10.1109/TPAMI.2008.77
10.1016/S0004-3702(97)00063-5
10.1016/j.knosys.2012.10.011
10.1109/LGRS.2015.2475299
10.1007/s12543-010-0047-4
10.1109/TIP.2010.2093906
10.1016/j.neucom.2014.12.123
10.1109/LGRS.2005.844169
10.1016/j.jnca.2011.01.002
10.1214/009053604000000067
10.1023/A:1007567018844
10.1023/A:1012487302797
10.1109/TKDE.2010.263
10.1109/34.709601
10.1093/bioinformatics/btl190
10.1016/j.csda.2009.12.013
10.1016/j.compbiolchem.2007.09.005
10.1016/j.procs.2013.05.011
10.1093/bioinformatics/btp630
10.1007/s10115-010-0288-x
10.1016/j.csda.2006.12.043
10.1109/TITB.2009.2018115
10.1016/j.patcog.2016.08.011
10.1109/TCBB.2005.28
10.1016/j.patrec.2010.12.014
10.1016/j.ipm.2004.08.006
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2017.11.077
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 79
ExternalDocumentID 10_1016_j_neucom_2017_11_077
S0925231218302911
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c372t-421a6cd7c50b8369cfbf54674a0465d34ef85c10a076e4cdda9e38526eac87d33
ISICitedReferencesCount 1373
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432490900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:14:51 EST 2025
Tue Nov 18 19:44:09 EST 2025
Fri Feb 23 02:30:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Feature selection
Data mining
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-421a6cd7c50b8369cfbf54674a0465d34ef85c10a076e4cdda9e38526eac87d33
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_neucom_2017_11_077
crossref_citationtrail_10_1016_j_neucom_2017_11_077
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_11_077
PublicationCentury 2000
PublicationDate 2018-07-26
PublicationDateYYYYMMDD 2018-07-26
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-26
  day: 26
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lu, Zhao, Zhang (bib0105) 2008; 21
Sotoca, Pla (bib0096) 2010; 43
Novovičová, Somol, Haindl, Pudil (bib0082) 2007
Swets, Weng (bib0015) 1995
Doquire, Verleysen (bib0129) 2011
Devaney, Ram (bib0122) 1997
Lane, Xue, Liu, Zhang (bib0038) 2014
Gibert, Valveny, Bunke (bib0037) 2012; 33
Vergara, Estévez (bib0068) 2014; 24
Li, Zheng, Huang (bib0048) 2008; 41
Doquire, Verleysen (bib0130) 2013; 121
De Bock, Coussement, Van den Poel (bib0156) 2010; 54
Abeel, Helleputte, Van de Peer, Dupont, Saeys (bib0160) 2010; 26
Herman, Zhang, Wang, Ye, Chen (bib0084) 2013; 46
Bonev (bib0045) 2010
Peng, Long, Ding (bib0042) 2005; 27
Langley (bib0006) 1996
Chen, Miao, Wang (bib0050) 2010; 31
Kononenko (bib0075) 1994
Fleuret (bib0043) 2004; 5
Huang (bib0063) 1996
Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, H. Liu, Advancing Feature Selection Research, ASU Feature Selection Repository (2010) 1–28.
Álvarez-Estévez, Sánchez-Maroño, Alonso-Betanzos, Moret-Bonillo (bib0161) 2011; 38
Vasconcelos (bib0011) 2003
Gennari (bib0121) 1991
Bishop (bib0126) 1995
Wang, Yu (bib0032) 2005; 3612
Saeys, Abeel, Van de Peer (bib0151) 2008
Van Landeghem, Abeel, Saeys, Van de Peer (bib0020) 2010; 26
Liu, Han, Li, Wong (bib0025) 2004; 4
Battiti (bib0080) 1994; 5
Choi, Ro, Plataniotis (bib0013) 2011; 20
Tibshirani (bib0057) 1996; 58
Wang, Li, Fang (bib0158) 2012; 13
Zou, Zeng, Cao, Ji (bib0097) 2016; 173
Chiang, Pell (bib0104) 2004; 14
Mirkin (bib0119) 1999; 35
Morgan (bib0041) 2001; 57
Ahn, Moon, Fazzari, Lim, Chen, Kodell (bib0154) 2007; 51
El Akadi, Amine, El Ouardighi, Aboutajdine (bib0108) 2011; 26
Cadenas, Garrido, MartíNez (bib0109) 2013; 40
Zhang, Zhang, Lok, Lyu (bib0065) 2007; 185
Shen, Bai (bib0040) 2006
Liu, Zhang, Xiao, Zhu, Zhao (bib0095) 2014
Zhang, Li, Scarf, Ball (bib0034) 2011; 74
Song, Smola, Gretton, Borgwardt, Bedo (bib0077) 2007
Kalakech, Biela, Macaire, Hamad (bib0137) 2011; 32
Rashedi, Nezamabadi-Pour, Saryazdi (bib0017) 2013; 39
Zhao, Lu, He (bib0128) 2008; 71
Liu, Motoda (bib0002) 2012
Song, Ni, Wang (bib0026) 2013; 25
Furlanello, Serafini, Merler, Jurman (bib0099) 2005; 2
Lazar, Taminau, Meganck, Steenhoff, Coletta, Molter, de Schaetzen, Duque, Bersini, Nowe (bib0152) 2012; 9
Zhang, Suganthan (bib0159) 2014; 47
Opitz (bib0150) 1999
Jie, Zhang, Cheng, Shen (bib0047) 2013
Yu, Huang (bib0031) 2013; 10
Amiri, Yousefi, Lucas, Shakery, Yazdani (bib0022) 2011; 34
Guyon, Elisseeff (bib0003) 2003; 3
Alelyani, Tang, Liu (bib0067) 2013; 29
Zhang, Li, Wang, Zhang (bib0088) 2013; 101
Vaithyanathan, Dom (bib0123) 1999
Crowley, Parker (bib0007) 1984; 6
Derrac, Cornelis, García, Herrera (bib0052) 2012; 186
Hall (bib0073) 2000
Lin, Chen (bib0149) 2013; 14
Hastie, Tibshirani (bib0146) 2004; 5
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (bib0162) 2012; 45
Zhong, Wang, Peng, Zhang, Li (bib0100) 2015; 20
Wu, Yu, Ding, Wang, Zhu (bib0166) 2013; 35
Alazab, Hobbs, Abawajy, Alazab (bib0023) 2012
Dash, Liu (bib0110) 1999
Padungweang, Lursinsap, Sunat (bib0115) 2009
Yang, Moody (bib0044) 1999; 12
Zhou, Chan (bib0114) 2015
Japkowicz (bib0148) 2000
Zheng, Huang, Zhang, Kong (bib0030) 2009; 13
Cheng, Deng, Fu, Wang, Qin (bib0127) 2011
Singh, Baranwal, Sevakula, Verma, Cui (bib0170) 2016
Huang, Du (bib0064) 2008; 19
Agrawal, Gehrke, Gunopulos, Raghavan (bib0118) 1998
Li, Chen, Wasserman (bib0169) 2015
Zhang, Zhang (bib0083) 2012; 39
Lee, Lee (bib0087) 2006; 42
Liu, Liu, Zhang (bib0157) 2010; 43
Swiniarski, Skowron (bib0049) 2003; 24
Yu, Wu, Ding, Pei (bib0167) 2014
Zou, Hastie (bib0058) 2005; 67
Cheng, Qin, Qian, Liu (bib0085) 2008
Guyon, Weston, Barnhill, Vapnik (bib0098) 2002; 46
Huang (bib0060) 1999; 13
Stein, Chen, Wu, Hua (bib0021) 2005
Perkins, Theiler (bib0163) 2003
Tan, Tsang, Wang (bib0144) 2014; 15
Alibeigi, Hashemi, Hamzeh (bib0112) 2011; 2
Huang, Xu, Ng, Ye (bib0124) 2008
Yang, Hou, Wu (bib0134) 2011
Ruangkanokmas, Achalakul, Akkarajitsakul (bib0168) 2016
Antoniades, Took (bib0171) 2016
Weinberger, Dasgupta, Langford, Smola, Attenberg (bib0145) 2009
Shu, Shen (bib0051) 2014; 47
Yang, He, Qu, Zhang (bib0142) 2016
Rauber, de Assis Boldt, Varejão (bib0033) 2015; 62
Au, Chan, Wong, Wang (bib0094) 2005; 2
Saxena, Pal, Vora (bib0117) 2010; 2
Quinlan (bib0054) 2014
Dhillon, Mallela, Kumar (bib0089) 2003; 3
Wang, Guo, Wang (bib0053) 2010; 1
Khotanzad, Hong (bib0010) 1990; 23
Chuang, Chang, Tu, Yang (bib0106) 2008; 32
Ho (bib0153) 1998; 20
Yu, Liu (bib0079) 2004; 5
Liu, Li, Wong (bib0024) 2002; 13
Li, Li, Wu, Sun (bib0039) 2014; 19
Liu, Yu (bib0078) 2005; 17
Zou (bib0059) 2006; 101
Mitra, Murthy, Pal (bib0113) 2002; 24
Khoshgoftaar, Dittman, Wald, Fazelpour (bib0036) 2012
Novovicová, Pudil, Kittler (bib0086) 1996; 18
Kwak, Choi (bib0081) 1999
Xue, Zhang, Browne (bib0107) 2014; 18
Gao, Li, Cai, Feng, Li, Jiang (bib0028) 2013; 9
Mirzaei, Mohsenzadeh, Sheikhzadeh (bib0056) 2017; 241
Jing, Huang, Shi (bib0019) 2002
Huang, Zheng (bib0029) 2006; 22
Ienco, Meo (bib0090) 2008
Yang, Chen, Ji (bib0132) 2010
Dy, Brodley (bib0120) 2004; 5
Benabdeslem, Hindawi (bib0138) 2011
Blum, Langley (bib0001) 1997; 97
Witten, Tibshirani (bib0091) 2010; 105
Sun, Huang, Cheun (bib0008) 2005; 15
Sunzhong, Jiang, Zhao, Wang, Fan (bib0133) 2013
Vasconcelos, Vasconcelos (bib0012) 2004
Li, Hu, Shen, Chen, Li (bib0027) 2008
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (bib0069) 2015; 86
Wang, Wang, Chang (bib0147) 2016; 111
Zou, Ni, Zhang, Wang (bib0172) 2015; 12
Swets, Weng (bib0016) 1996; 18
Zhou, Foster, Stine, Ungar (bib0164) 2006; 7
Han, Pei, Kamber (bib0062) 2011
Deng, Berg, Fei-Fei (bib0143) 2011
Goltsev, Gritsenko (bib0014) 2012; 28
Kira, Rendell (bib0074) 1992
Martín-Smith, Ortega, Asensio-Cubero, Gan, Ortiz (bib0076) 2017; 250
Benabdeslem, Hindawi (bib0140) 2014; 26
Chen, Huang, Huang (bib0131) 2010
Javed, Babri, Saeed (bib0102) 2012; 24
Deepthi, Thampi (bib0125) 2015
Xu, King, Lyu, Jin (bib0046) 2010; 21
Zhao, Deng, Shi (bib0093) 2013; 17
Efron, Hastie, Johnstone, Tibshirani (bib0055) 2004; 32
Sheikhpour, Sarram, Gharaghani, Chahooki (bib0071) 2017; 64
Vandenbroucke, Macaire, Postaire (bib0111) 2000
Zhang, Chen, Zhou (bib0139) 2008; 41
Sun, Huang, Cheung, Liu, Huang (bib0009) 2005; 2
Lewis, Yang, Rose, Li (bib0018) 2004; 5
Fayyad, Irani (bib0072) 1993
Liu, Nie, Wu, Chen (bib0136) 2010
Hsu (bib0103) 2004; 163
Wang, Wang, Liao, Chen (bib0141) 2017; 61
Tang, Alelyani, Liu (bib0066) 2014
Rodriguez, Laio (bib0061) 2014; 344
Langley (bib0005) 1994
Liu, Nie, Wu, Chen (bib0135) 2013; 105
He, Cai, Niyogi (bib0116) 2005
Wu, Yu, Wang, Ding (bib0165) 2010
Ang, Mirzal, Haron, Hamed (bib0070) 2016; 13
Michalak, Kwaśnicka (bib0101) 2006; 16
Liu, Wu, Zhang (bib0092) 2011
Breiman (bib0155) 2001; 45
Vasconcelos, Vasconcelos (bib0035) 2009; 31
Khoshgoftaar (10.1016/j.neucom.2017.11.077_bib0036) 2012
10.1016/j.neucom.2017.11.077_bib0004
Liu (10.1016/j.neucom.2017.11.077_bib0025) 2004; 4
Yu (10.1016/j.neucom.2017.11.077_bib0167) 2014
Novovičová (10.1016/j.neucom.2017.11.077_bib0082) 2007
Zhang (10.1016/j.neucom.2017.11.077_bib0034) 2011; 74
Lazar (10.1016/j.neucom.2017.11.077_bib0152) 2012; 9
Xu (10.1016/j.neucom.2017.11.077_bib0046) 2010; 21
He (10.1016/j.neucom.2017.11.077_bib0116) 2005
Huang (10.1016/j.neucom.2017.11.077_bib0124) 2008
Benabdeslem (10.1016/j.neucom.2017.11.077_bib0140) 2014; 26
Liu (10.1016/j.neucom.2017.11.077_bib0092) 2011
Goltsev (10.1016/j.neucom.2017.11.077_bib0014) 2012; 28
Au (10.1016/j.neucom.2017.11.077_bib0094) 2005; 2
Javed (10.1016/j.neucom.2017.11.077_bib0102) 2012; 24
Wang (10.1016/j.neucom.2017.11.077_bib0053) 2010; 1
Liu (10.1016/j.neucom.2017.11.077_bib0002) 2012
Tang (10.1016/j.neucom.2017.11.077_bib0066) 2014
Liu (10.1016/j.neucom.2017.11.077_bib0095) 2014
De Bock (10.1016/j.neucom.2017.11.077_bib0156) 2010; 54
Padungweang (10.1016/j.neucom.2017.11.077_bib0115) 2009
Wang (10.1016/j.neucom.2017.11.077_bib0158) 2012; 13
Kononenko (10.1016/j.neucom.2017.11.077_bib0075) 1994
Cadenas (10.1016/j.neucom.2017.11.077_bib0109) 2013; 40
Deepthi (10.1016/j.neucom.2017.11.077_bib0125) 2015
Fayyad (10.1016/j.neucom.2017.11.077_bib0072) 1993
Choi (10.1016/j.neucom.2017.11.077_bib0013) 2011; 20
Lee (10.1016/j.neucom.2017.11.077_bib0087) 2006; 42
Rauber (10.1016/j.neucom.2017.11.077_bib0033) 2015; 62
Liu (10.1016/j.neucom.2017.11.077_bib0078) 2005; 17
Wang (10.1016/j.neucom.2017.11.077_bib0147) 2016; 111
Bolón-Canedo (10.1016/j.neucom.2017.11.077_bib0162) 2012; 45
Li (10.1016/j.neucom.2017.11.077_bib0169) 2015
Song (10.1016/j.neucom.2017.11.077_bib0077) 2007
Guyon (10.1016/j.neucom.2017.11.077_bib0098) 2002; 46
Michalak (10.1016/j.neucom.2017.11.077_bib0101) 2006; 16
Wu (10.1016/j.neucom.2017.11.077_bib0165) 2010
Herman (10.1016/j.neucom.2017.11.077_bib0084) 2013; 46
Zhang (10.1016/j.neucom.2017.11.077_bib0088) 2013; 101
Cheng (10.1016/j.neucom.2017.11.077_bib0127) 2011
Zhang (10.1016/j.neucom.2017.11.077_bib0139) 2008; 41
Liu (10.1016/j.neucom.2017.11.077_bib0136) 2010
Benabdeslem (10.1016/j.neucom.2017.11.077_bib0138) 2011
Weinberger (10.1016/j.neucom.2017.11.077_bib0145) 2009
Fleuret (10.1016/j.neucom.2017.11.077_bib0043) 2004; 5
Yu (10.1016/j.neucom.2017.11.077_bib0031) 2013; 10
Sun (10.1016/j.neucom.2017.11.077_bib0009) 2005; 2
Dy (10.1016/j.neucom.2017.11.077_bib0120) 2004; 5
Bishop (10.1016/j.neucom.2017.11.077_bib0126) 1995
Zou (10.1016/j.neucom.2017.11.077_bib0058) 2005; 67
Zou (10.1016/j.neucom.2017.11.077_bib0059) 2006; 101
Shen (10.1016/j.neucom.2017.11.077_bib0040) 2006
Opitz (10.1016/j.neucom.2017.11.077_bib0150) 1999
Vasconcelos (10.1016/j.neucom.2017.11.077_bib0035) 2009; 31
Sun (10.1016/j.neucom.2017.11.077_bib0008) 2005; 15
Battiti (10.1016/j.neucom.2017.11.077_bib0080) 1994; 5
Khotanzad (10.1016/j.neucom.2017.11.077_bib0010) 1990; 23
Alibeigi (10.1016/j.neucom.2017.11.077_bib0112) 2011; 2
Zhou (10.1016/j.neucom.2017.11.077_bib0114) 2015
Devaney (10.1016/j.neucom.2017.11.077_bib0122) 1997
Perkins (10.1016/j.neucom.2017.11.077_bib0163) 2003
Zhang (10.1016/j.neucom.2017.11.077_bib0065) 2007; 185
Vasconcelos (10.1016/j.neucom.2017.11.077_bib0012) 2004
Mitra (10.1016/j.neucom.2017.11.077_bib0113) 2002; 24
Singh (10.1016/j.neucom.2017.11.077_bib0170) 2016
Dash (10.1016/j.neucom.2017.11.077_bib0110) 1999
Chen (10.1016/j.neucom.2017.11.077_bib0131) 2010
Peng (10.1016/j.neucom.2017.11.077_bib0042) 2005; 27
Yang (10.1016/j.neucom.2017.11.077_bib0134) 2011
Furlanello (10.1016/j.neucom.2017.11.077_bib0099) 2005; 2
Mirzaei (10.1016/j.neucom.2017.11.077_bib0056) 2017; 241
Zhao (10.1016/j.neucom.2017.11.077_bib0128) 2008; 71
Ho (10.1016/j.neucom.2017.11.077_bib0153) 1998; 20
Gao (10.1016/j.neucom.2017.11.077_bib0028) 2013; 9
Agrawal (10.1016/j.neucom.2017.11.077_bib0118) 1998
Alazab (10.1016/j.neucom.2017.11.077_bib0023) 2012
Liu (10.1016/j.neucom.2017.11.077_bib0024) 2002; 13
Huang (10.1016/j.neucom.2017.11.077_bib0060) 1999; 13
Breiman (10.1016/j.neucom.2017.11.077_bib0155) 2001; 45
Tibshirani (10.1016/j.neucom.2017.11.077_bib0057) 1996; 58
Martín-Smith (10.1016/j.neucom.2017.11.077_bib0076) 2017; 250
Tan (10.1016/j.neucom.2017.11.077_bib0144) 2014; 15
Langley (10.1016/j.neucom.2017.11.077_bib0005) 1994
Sheikhpour (10.1016/j.neucom.2017.11.077_bib0071) 2017; 64
Li (10.1016/j.neucom.2017.11.077_bib0039) 2014; 19
Japkowicz (10.1016/j.neucom.2017.11.077_bib0148) 2000
Sunzhong (10.1016/j.neucom.2017.11.077_bib0133) 2013
Vandenbroucke (10.1016/j.neucom.2017.11.077_bib0111) 2000
Zou (10.1016/j.neucom.2017.11.077_bib0097) 2016; 173
Ruangkanokmas (10.1016/j.neucom.2017.11.077_bib0168) 2016
Novovicová (10.1016/j.neucom.2017.11.077_bib0086) 1996; 18
Antoniades (10.1016/j.neucom.2017.11.077_bib0171) 2016
Zou (10.1016/j.neucom.2017.11.077_bib0172) 2015; 12
Han (10.1016/j.neucom.2017.11.077_bib0062) 2011
Chuang (10.1016/j.neucom.2017.11.077_bib0106) 2008; 32
Vasconcelos (10.1016/j.neucom.2017.11.077_bib0011) 2003
Swiniarski (10.1016/j.neucom.2017.11.077_bib0049) 2003; 24
Zhang (10.1016/j.neucom.2017.11.077_bib0083) 2012; 39
Blum (10.1016/j.neucom.2017.11.077_bib0001) 1997; 97
Chiang (10.1016/j.neucom.2017.11.077_bib0104) 2004; 14
Rodriguez (10.1016/j.neucom.2017.11.077_bib0061) 2014; 344
Vaithyanathan (10.1016/j.neucom.2017.11.077_bib0123) 1999
Huang (10.1016/j.neucom.2017.11.077_bib0063) 1996
Langley (10.1016/j.neucom.2017.11.077_bib0006) 1996
Swets (10.1016/j.neucom.2017.11.077_bib0016) 1996; 18
Kalakech (10.1016/j.neucom.2017.11.077_bib0137) 2011; 32
Song (10.1016/j.neucom.2017.11.077_bib0026) 2013; 25
Zhao (10.1016/j.neucom.2017.11.077_bib0093) 2013; 17
Wu (10.1016/j.neucom.2017.11.077_bib0166) 2013; 35
Chen (10.1016/j.neucom.2017.11.077_bib0050) 2010; 31
Yang (10.1016/j.neucom.2017.11.077_bib0044) 1999; 12
Wang (10.1016/j.neucom.2017.11.077_bib0032) 2005; 3612
Kira (10.1016/j.neucom.2017.11.077_bib0074) 1992
Álvarez-Estévez (10.1016/j.neucom.2017.11.077_bib0161) 2011; 38
Liu (10.1016/j.neucom.2017.11.077_bib0157) 2010; 43
Zhou (10.1016/j.neucom.2017.11.077_bib0164) 2006; 7
Crowley (10.1016/j.neucom.2017.11.077_bib0007) 1984; 6
Saxena (10.1016/j.neucom.2017.11.077_bib0117) 2010; 2
Yang (10.1016/j.neucom.2017.11.077_bib0142) 2016
Amiri (10.1016/j.neucom.2017.11.077_bib0022) 2011; 34
Li (10.1016/j.neucom.2017.11.077_bib0048) 2008; 41
Zhong (10.1016/j.neucom.2017.11.077_bib0100) 2015; 20
Zheng (10.1016/j.neucom.2017.11.077_bib0030) 2009; 13
Derrac (10.1016/j.neucom.2017.11.077_bib0052) 2012; 186
Doquire (10.1016/j.neucom.2017.11.077_bib0129) 2011
Mirkin (10.1016/j.neucom.2017.11.077_bib0119) 1999; 35
Lu (10.1016/j.neucom.2017.11.077_bib0105) 2008; 21
Efron (10.1016/j.neucom.2017.11.077_bib0055) 2004; 32
Ahn (10.1016/j.neucom.2017.11.077_bib0154) 2007; 51
Witten (10.1016/j.neucom.2017.11.077_bib0091) 2010; 105
El Akadi (10.1016/j.neucom.2017.11.077_bib0108) 2011; 26
Ang (10.1016/j.neucom.2017.11.077_bib0070) 2016; 13
Lane (10.1016/j.neucom.2017.11.077_bib0038) 2014
Gibert (10.1016/j.neucom.2017.11.077_bib0037) 2012; 33
Huang (10.1016/j.neucom.2017.11.077_bib0029) 2006; 22
Gennari (10.1016/j.neucom.2017.11.077_bib0121) 1991
Stein (10.1016/j.neucom.2017.11.077_bib0021) 2005
Vergara (10.1016/j.neucom.2017.11.077_bib0068) 2014; 24
Sotoca (10.1016/j.neucom.2017.11.077_bib0096) 2010; 43
Alelyani (10.1016/j.neucom.2017.11.077_bib0067) 2013; 29
Van Landeghem (10.1016/j.neucom.2017.11.077_bib0020) 2010; 26
Xue (10.1016/j.neucom.2017.11.077_bib0107) 2014; 18
Jing (10.1016/j.neucom.2017.11.077_bib0019) 2002
Li (10.1016/j.neucom.2017.11.077_bib0027) 2008
Hsu (10.1016/j.neucom.2017.11.077_bib0103) 2004; 163
Jie (10.1016/j.neucom.2017.11.077_bib0047) 2013
Lewis (10.1016/j.neucom.2017.11.077_bib0018) 2004; 5
Yang (10.1016/j.neucom.2017.11.077_bib0132) 2010
Yu (10.1016/j.neucom.2017.11.077_bib0079) 2004; 5
Liu (10.1016/j.neucom.2017.11.077_bib0135) 2013; 105
Rashedi (10.1016/j.neucom.2017.11.077_bib0017) 2013; 39
Dhillon (10.1016/j.neucom.2017.11.077_bib0089) 2003; 3
Morgan (10.1016/j.neucom.2017.11.077_bib0041) 2001; 57
Doquire (10.1016/j.neucom.2017.11.077_bib0130) 2013; 121
Saeys (10.1016/j.neucom.2017.11.077_bib0151) 2008
Lin (10.1016/j.neucom.2017.11.077_bib0149) 2013; 14
Cheng (10.1016/j.neucom.2017.11.077_bib0085) 2008
Bolón-Canedo (10.1016/j.neucom.2017.11.077_bib0069) 2015; 86
Hall (10.1016/j.neucom.2017.11.077_bib0073) 2000
Huang (10.1016/j.neucom.2017.11.077_bib0064) 2008; 19
Shu (10.1016/j.neucom.2017.11.077_bib0051) 2014; 47
Ienco (10.1016/j.neucom.2017.11.077_bib0090) 2008
Zhang (10.1016/j.neucom.2017.11.077_bib0159) 2014; 47
Guyon (10.1016/j.neucom.2017.11.077_bib0003) 2003; 3
Hastie (10.1016/j.neucom.2017.11.077_bib0146) 2004; 5
Swets (10.1016/j.neucom.2017.11.077_bib0015) 1995
Bonev (10.1016/j.neucom.2017.11.077_bib0045) 2010
Abeel (10.1016/j.neucom.2017.11.077_bib0160) 2010; 26
Deng (10.1016/j.neucom.2017.11.077_bib0143) 2011
Kwak (10.1016/j.neucom.2017.11.077_bib0081) 1999
Wang (10.1016/j.neucom.2017.11.077_bib0141) 2017; 61
Quinlan (10.1016/j.neucom.2017.11.077_bib0054) 2014
References_xml – volume: 9
  start-page: 1106
  year: 2012
  end-page: 1119
  ident: bib0152
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 54
  start-page: 1535
  year: 2010
  end-page: 1546
  ident: bib0156
  article-title: Ensemble classification based on generalized additive models
  publication-title: Comput. Stat. Data Anal.
– start-page: 1
  year: 2006
  end-page: 11
  ident: bib0040
  article-title: Information theory for Gabor feature selection for face recognition
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 2
  start-page: 110
  year: 2005
  end-page: 118
  ident: bib0099
  article-title: Semisupervised learning for molecular profiling
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– start-page: 248
  year: 2011
  end-page: 255
  ident: bib0129
  article-title: Graph Laplacian for semi-supervised feature selection in regression problems
  publication-title: Proceedings of International Work-Conference on Artificial Neural Networks
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: bib0065
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– start-page: 41
  year: 2008
  end-page: 47
  ident: bib0027
  article-title: A novel unsupervised feature selection method for bioinformatics data sets through feature clustering
  publication-title: Proceedings of IEEE International Conference on Granular Computing
– volume: 15
  start-page: 1371
  year: 2014
  end-page: 1429
  ident: bib0144
  article-title: Towards ultrahigh dimensional feature selection for big data
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 1178
  year: 2013
  end-page: 1192
  ident: bib0166
  article-title: Online feature selection with streaming features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 71
  start-page: 1842
  year: 2008
  end-page: 1849
  ident: bib0128
  article-title: Locality sensitive semi-supervised feature selection
  publication-title: Neurocomputing
– start-page: 724
  year: 1991
  end-page: 728
  ident: bib0121
  article-title: Concept formation and attention
  publication-title: Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society
– volume: 7
  start-page: 1861
  year: 2006
  end-page: 1885
  ident: bib0164
  article-title: Streamwise feature selection
  publication-title: J. Mach. Learn. Res.
– start-page: 249
  year: 1992
  end-page: 256
  ident: bib0074
  article-title: A practical approach to feature selection
  publication-title: Proceedings of the Ninth International Workshop on Machine Learning
– volume: 101
  start-page: 32
  year: 2013
  end-page: 42
  ident: bib0088
  article-title: Divergence-based feature selection for separate classes
  publication-title: Neurocomputing
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: bib0153
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 2425
  year: 2010
  end-page: 2432
  ident: bib0053
  article-title: Rough set and Tabu search based feature selection for credit scoring
  publication-title: Procedia Comput. Sci.
– start-page: 171
  year: 1994
  end-page: 182
  ident: bib0075
  article-title: Estimating attributes: analysis and extensions of RELIEF
  publication-title: Proceedings of European Conference on Machine Learning
– volume: 19
  start-page: 57
  year: 2014
  end-page: 67
  ident: bib0039
  article-title: Statistics-based wrapper for feature selection: an implementation on financial distress identification with support vector machine
  publication-title: Appl. Soft Comput.
– volume: 173
  start-page: 346
  year: 2016
  end-page: 354
  ident: bib0097
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
– start-page: 379
  year: 1999
  end-page: 384
  ident: bib0150
  article-title: Feature selection for ensembles
  publication-title: Proceedings of 16th National Conference on Artificial Intelligence
– start-page: 417
  year: 2007
  end-page: 426
  ident: bib0082
  article-title: Conditional mutual information based feature selection for classification task
  publication-title: Proceedings of the 12th Iberoamerican Conference on Congress on Pattern Recognition
– start-page: 664
  year: 2013
  end-page: 668
  ident: bib0133
  article-title: Manifold based fisher method for semi-supervised feature selection
  publication-title: Proceedings of International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
– volume: 29
  start-page: 110
  year: 2013
  end-page: 121
  ident: bib0067
  article-title: Feature selection for clustering: a revie
  publication-title: Data Clust.: Algorithms Appl.
– volume: 12
  start-page: 687
  year: 1999
  end-page: 693
  ident: bib0044
  article-title: Data visualization and feature selection: new algorithms for nongaussian data
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1113
  year: 2009
  end-page: 1120
  ident: bib0145
  article-title: Feature hashing for large scale multitask learning
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning
– volume: 74
  start-page: 2941
  year: 2011
  end-page: 2952
  ident: bib0034
  article-title: Feature selection for high-dimensional machinery fault diagnosis data using multiple models and Radial Basis Function networks
  publication-title: Neurocomputing
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: bib0107
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 301
  year: 2002
  end-page: 312
  ident: bib0113
  article-title: Unsupervised feature selection using feature similarity
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 61
  start-page: 511
  year: 2017
  end-page: 523
  ident: bib0141
  article-title: An efficient semi-supervised representatives feature selection algorithm based on information theory
  publication-title: Pattern Recognit.
– volume: 47
  start-page: 3429
  year: 2014
  end-page: 3437
  ident: bib0159
  article-title: Random forests with ensemble of feature spaces
  publication-title: Pattern Recognit.
– volume: 105
  start-page: 12
  year: 2013
  end-page: 18
  ident: bib0135
  article-title: Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
  publication-title: Neurocomputing
– start-page: 433
  year: 1999
  end-page: 443
  ident: bib0123
  article-title: Model selection in unsupervised learning with applications to document clustering
  publication-title: Proceedings of International Conference on Machine Learning
– volume: 51
  start-page: 6166
  year: 2007
  end-page: 6179
  ident: bib0154
  article-title: Classification by ensembles from random partitions of high-dimensional data
  publication-title: Comput. Stat. Data Anal.
– start-page: 245
  year: 1994
  end-page: 271
  ident: bib0005
  article-title: Selection of relevant features in machine learning
  publication-title: Proceedings of the AAAI Fall Symposium on Relevance
– volume: 24
  start-page: 465
  year: 2012
  end-page: 477
  ident: bib0102
  article-title: Feature selection based on class-dependent densities for high-dimensional binary data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 14
  start-page: 143
  year: 2004
  end-page: 155
  ident: bib0104
  article-title: Genetic algorithms combined with discriminant analysis for key variable identification
  publication-title: J. Process Control
– volume: 57
  start-page: 320
  year: 2001
  ident: bib0041
  article-title: Model selection and inference: a practical information – theoretic approach
  publication-title: Biometrics
– volume: 163
  start-page: 103
  year: 2004
  end-page: 122
  ident: bib0103
  article-title: Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
  publication-title: Inf. Sci.
– volume: 26
  start-page: 1131
  year: 2014
  end-page: 1143
  ident: bib0140
  article-title: Efficient semi-supervised feature selection: constraint, relevance, and redundancy
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 111
  start-page: 21
  year: 2016
  end-page: 31
  ident: bib0147
  article-title: Feature selection methods for big data bioinformatics: a survey from the search perspective
  publication-title: Methods
– volume: 26
  start-page: 392
  year: 2010
  end-page: 398
  ident: bib0160
  article-title: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
  publication-title: Bioinformatics
– start-page: 264
  year: 2014
  end-page: 271
  ident: bib0095
  article-title: A supervised feature selection algorithm through minimum spanning tree clustering
  publication-title: Proceedings of International Conference on Tools with Artificial Intelligence (ICTAI)
– volume: 15
  start-page: 331
  year: 2005
  end-page: 346
  ident: bib0008
  article-title: Extracting nonlinear features for multispectral images by FCMC and KPCA
  publication-title: Digit. Signal Process.
– volume: 46
  start-page: 3315
  year: 2013
  end-page: 3327
  ident: bib0084
  article-title: Mutual information-based method for selecting informative feature sets
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 656
  year: 2011
  end-page: 665
  ident: bib0137
  article-title: Constraint scores for semi-supervised feature selection: a comparative study
  publication-title: Pattern Recognit. Lett.
– start-page: 660
  year: 2014
  end-page: 669
  ident: bib0167
  article-title: Towards scalable and accurate online feature selection for big data
  publication-title: Proceedings of IEEE International Conference on Data Mining (ICDM)
– reference: Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, H. Liu, Advancing Feature Selection Research, ASU Feature Selection Repository (2010) 1–28.
– volume: 10
  start-page: 457
  year: 2013
  end-page: 467
  ident: bib0031
  article-title: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 26
  start-page: 487
  year: 2011
  end-page: 500
  ident: bib0108
  article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowl. Inf. Syst.
– volume: 5
  start-page: 361
  year: 2004
  end-page: 397
  ident: bib0018
  article-title: Rcv1: a new benchmark collection for text categorization research
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 887
  year: 2008
  end-page: 891
  ident: bib0105
  article-title: Feature selection based-on genetic algorithm for image annotation
  publication-title: Knowl.-Based Syst.
– start-page: 1313
  year: 1999
  end-page: 1318
  ident: bib0081
  article-title: Improved mutual information feature selector for neural networks in supervised learning
  publication-title: Proceedings of International Joint Conference on Neural Networks (IJCNN)
– volume: 5
  start-page: 1531
  year: 2004
  end-page: 1555
  ident: bib0043
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 491
  year: 2015
  end-page: 499
  ident: bib0100
  article-title: A feature selection method for prediction essential protein
  publication-title: Tsinghua Sci. Technol.
– volume: 35
  start-page: 25
  year: 1999
  end-page: 39
  ident: bib0119
  article-title: Concept learning and feature selection based on square-error clustering
  publication-title: Mach. Learn.
– volume: 13
  start-page: 51
  year: 2002
  end-page: 60
  ident: bib0024
  article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
  publication-title: Genome Inform.
– volume: 2
  start-page: 83
  year: 2005
  end-page: 101
  ident: bib0094
  article-title: Attribute clustering for grouping, selection, and classification of gene expression data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 41
  start-page: 1440
  year: 2008
  end-page: 1451
  ident: bib0139
  article-title: Constraint Score: A new filter method for feature selection with pairwise constraints
  publication-title: Pattern Recognit.
– year: 1999
  ident: bib0110
  article-title: Handling large unsupervised data via dimensionality reduction
  publication-title: Proceedings of SIGMOD Research Issues in Data Mining and Knowledge Discovery Workshop
– volume: 13
  start-page: 599
  year: 2009
  end-page: 607
  ident: bib0030
  article-title: Tumor clustering using nonnegative matrix factorization with gene selection
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– start-page: 1
  year: 2016
  end-page: 27
  ident: bib0142
  article-title: Semi-supervised minimum redundancy maximum relevance feature selection for audio classification
  publication-title: Multimedia Tools and Applications
– volume: 47
  start-page: 3890
  year: 2014
  end-page: 3906
  ident: bib0051
  article-title: Incremental feature selection based on rough set in dynamic incomplete data
  publication-title: Pattern Recognit.
– start-page: 92
  year: 1997
  end-page: 97
  ident: bib0122
  article-title: Efficient feature selection in conceptual clustering
  publication-title: Proceedings of International Conference on Machine Learning (ICML)
– start-page: 823
  year: 2007
  end-page: 830
  ident: bib0077
  article-title: Supervised feature selection via dependence estimation
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– start-page: 527
  year: 2010
  end-page: 532
  ident: bib0132
  article-title: Semi_Fisher score: a semi-supervised method for feature selection
  publication-title: Proceedings of International Conference on Machine Learning and Cybernetics (ICMLC)
– year: 2016
  ident: bib0168
  article-title: Deep belief networks with feature selection for sentiment classification
  publication-title: Proceedings of the 7th International Conference on Intelligent Systems, Modelling and Simulation
– volume: 12
  start-page: 2321
  year: 2015
  end-page: 2325
  ident: bib0172
  article-title: Deep learning based feature selection for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 24
  start-page: 175
  year: 2014
  end-page: 186
  ident: bib0068
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
– volume: 40
  start-page: 6241
  year: 2013
  end-page: 6252
  ident: bib0109
  article-title: Feature subset selection filter–wrapper based on low quality data
  publication-title: Expert Syst. Appl.
– volume: 121
  start-page: 5
  year: 2013
  end-page: 13
  ident: bib0130
  article-title: A graph Laplacian based approach to semi-supervised feature selection for regression problems
  publication-title: Neurocomputing
– start-page: 1542
  year: 2016
  end-page: 1548
  ident: bib0170
  article-title: Layerwise feature selection in stacked sparse auto-encoder for tumor type prediction
  publication-title: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 18
  start-page: 218
  year: 1996
  end-page: 223
  ident: bib0086
  article-title: Divergence based feature selection for multimodal class densities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 1996
  ident: bib0063
  article-title: Systematic Theory of Neural Networks for Pattern Recognition
– volume: 186
  start-page: 73
  year: 2012
  end-page: 92
  ident: bib0052
  article-title: Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
  publication-title: Inf. Sci.
– volume: 32
  start-page: 29
  year: 2008
  end-page: 38
  ident: bib0106
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
– volume: 33
  start-page: 1980
  year: 2012
  end-page: 1990
  ident: bib0037
  article-title: Feature selection on node statistics based embedding of graphs
  publication-title: Pattern Recognit. Lett.
– year: 1995
  ident: bib0015
  article-title: Efficient content-based image retrieval using automatic feature selection
  publication-title: Proceedings of International Symposium on Computer Vision
– volume: 24
  start-page: 833
  year: 2003
  end-page: 849
  ident: bib0049
  article-title: Rough set methods in feature selection and recognition
  publication-title: Pattern Recognit. Lett.
– start-page: 204
  year: 2011
  end-page: 218
  ident: bib0138
  article-title: Constrained laplacian score for semi-supervised feature selection
  publication-title: Proceedings of Machine Learning and Knowledge Discovery in Databases
– volume: 41
  start-page: 3813
  year: 2008
  end-page: 3821
  ident: bib0048
  article-title: Locally linear discriminant embedding: an efficient method for face recognition
  publication-title: Pattern Recognit.
– start-page: 1123
  year: 2010
  end-page: 1126
  ident: bib0131
  article-title: Graph-based semi-supervised weighted band selection for classification of hyperspectral data
  publication-title: Proceedings of International Conference on Audio Language and Image Processing (ICALIP)
– year: 2012
  ident: bib0002
  article-title: Feature Selection for Knowledge Discovery and Data Mining
– start-page: 1022
  year: 1993
  end-page: 1027
  ident: bib0072
  article-title: Multi-interval discretization of continuous-valued attributes for classification learning
  publication-title: Proceedings of the 13th International Joint Conference on Artificial Intelligence
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0058
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.: Ser. B
– volume: 3612
  start-page: 832
  year: 2005
  end-page: 840
  ident: bib0032
  article-title: Fault feature selection based on modified binary PSO with mutation and its application in chemical process fault diagnosis
  publication-title: Adv. Nat. Comput.
– start-page: 507
  year: 2005
  end-page: 514
  ident: bib0116
  article-title: Laplacian score for feature selection
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– start-page: 193
  year: 2008
  end-page: 209
  ident: bib0124
  article-title: Weighting method for feature selection in k-means
  publication-title: Computational Methods of Feature Selection
– start-page: 329
  year: 2011
  end-page: 332
  ident: bib0134
  article-title: A semi-supervised method for feature selection
  publication-title: Proceedings of International Conference on Computational and Information Sciences (ICCIS)
– volume: 34
  start-page: 1184
  year: 2011
  end-page: 1199
  ident: bib0022
  article-title: Mutual information-based feature selection for intrusion detection systems
  publication-title: J. Netw. Comput. Appl.
– volume: 43
  start-page: 2763
  year: 2010
  end-page: 2772
  ident: bib0157
  article-title: Ensemble gene selection for cancer classification
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2015
  end-page: 7
  ident: bib0114
  article-title: An unsupervised attribute clustering algorithm for unsupervised feature selection
  publication-title: Proceedings of IEEE International Conference on Data Science and Advanced Analytics (DSAA)
– volume: 28
  start-page: 15
  year: 2012
  end-page: 23
  ident: bib0014
  article-title: Investigation of efficient features for image recognition by neural networks,
  publication-title: Neural Netw.
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: bib0079
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0026
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 296
  year: 2012
  end-page: 301
  ident: bib0023
  article-title: Using feature selection for intrusion detection system
  publication-title: Proceedings of International Symposium on Communications and Information Technologies (ISCIT)
– volume: 31
  start-page: 226
  year: 2010
  end-page: 233
  ident: bib0050
  article-title: A rough set approach to feature selection based on ant colony optimization
  publication-title: Pattern Recognit. Lett.
– volume: 5
  start-page: 537
  year: 1994
  end-page: 550
  ident: bib0080
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Netw.
– year: 1995
  ident: bib0126
  article-title: Neural Networks for Pattern Recognition
– volume: 23
  start-page: 1089
  year: 1990
  end-page: 1101
  ident: bib0010
  article-title: Rotation invariant image recognition using features selected via a systematic method
  publication-title: Pattern Recognit.
– volume: 2
  start-page: 229
  year: 2010
  end-page: 247
  ident: bib0117
  article-title: Evolutionary methods for unsupervised feature selection using Sammon's stress function
  publication-title: Fuzzy Inf. Eng.
– volume: 39
  start-page: 85
  year: 2013
  end-page: 94
  ident: bib0017
  article-title: A simultaneous feature adaptation and feature selection method for content-based image retrieval systems
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 971
  year: 2016
  end-page: 989
  ident: bib0070
  article-title: Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 2
  start-page: 108
  year: 2005
  end-page: 112
  ident: bib0009
  article-title: Using FCMC, FVS, and PCA techniques for feature extraction of multispectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 133
  year: 2014
  end-page: 144
  ident: bib0038
  article-title: Gaussian based particle swarm optimisation and statistical clustering for feature selection
  publication-title: Proceedings of European Conference on Evolutionary Computation in Combinatorial Optimization
– year: 2014
  ident: bib0054
  article-title: C4. 5: Programs for Machine Learning
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: bib0059
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– start-page: 577
  year: 2008
  end-page: 587
  ident: bib0090
  article-title: Exploration and reduction of the feature space by hierarchical clustering
  publication-title: Proceedings of SIAM International Conference on Data Mining
– start-page: 134
  year: 2015
  end-page: 135
  ident: bib0125
  article-title: Unsupervised gene selection using particle swarm optimization and k-means
  publication-title: Proceedings of the Second ACM IKDD Conference on Data Sciences
– volume: 5
  start-page: 329
  year: 2004
  end-page: 340
  ident: bib0146
  article-title: Efficient quadratic regularization for expression arrays
  publication-title: Biostatistics
– start-page: 592
  year: 2003
  end-page: 599
  ident: bib0163
  article-title: Online feature selection using grafting
  publication-title: Proceedings of the 20th International Conference on Machine Learning (ICML)
– start-page: 151
  year: 2012
  end-page: 157
  ident: bib0036
  article-title: First order statistics based feature selection: a diverse and powerful family of feature seleciton techniques
  publication-title: Proceedings of 11th International Conference on Machine Learning and Applications (ICMLA)
– volume: 22
  start-page: 1855
  year: 2006
  end-page: 1862
  ident: bib0029
  article-title: Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
  publication-title: Bioinformatics
– start-page: 275
  year: 2013
  end-page: 283
  ident: bib0047
  article-title: Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease
  publication-title: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 20
  start-page: 1425
  year: 2011
  end-page: 1434
  ident: bib0013
  article-title: Boosting color feature selection for color face recognition
  publication-title: IEEE Trans. Image Process.
– start-page: 37
  year: 2014
  end-page: 64
  ident: bib0066
  article-title: Feature selection for classification: a review
  publication-title: Data Classif.: Algorithms Appl.
– start-page: 944
  year: 2002
  end-page: 946
  ident: bib0019
  article-title: Improved feature selection approach TFIDF in text mining
  publication-title: Proceedings of International Conference on Machine Learning and Cybernetics
– volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  ident: bib0078
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 17
  start-page: 70
  year: 2013
  end-page: 79
  ident: bib0093
  article-title: Feature selection with attributes clustering by maximal information coefficient
  publication-title: Procedia Comput. Sci.
– volume: 86
  start-page: 33
  year: 2015
  end-page: 45
  ident: bib0069
  article-title: Recent advances and emerging challenges of feature selection in the context of big data
  publication-title: Knowl.-Based Syst.
– start-page: 293
  year: 2010
  end-page: 296
  ident: bib0136
  article-title: Semi-supervised feature selection based on label propagation and subset selection
  publication-title: Proceedings of International Conference on Computer and Information Application (ICCIA)
– volume: 19
  start-page: 2099
  year: 2008
  end-page: 2115
  ident: bib0064
  article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 43
  start-page: 2068
  year: 2010
  end-page: 2081
  ident: bib0096
  article-title: Supervised feature selection by clustering using conditional mutual information-based distances
  publication-title: Pattern Recognit.
– volume: 9
  start-page: 61
  year: 2013
  end-page: 69
  ident: bib0028
  article-title: Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection
  publication-title: Mol. Biosyst.
– volume: 21
  start-page: 1033
  year: 2010
  end-page: 1047
  ident: bib0046
  article-title: Discriminative semi-supervised feature selection via manifold regularization
  publication-title: IEEE Trans. Neural Netw.
– year: 2011
  ident: bib0062
  article-title: Data Mining: Concepts and Techniques
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0155
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 31
  start-page: 228
  year: 2009
  end-page: 244
  ident: bib0035
  article-title: Natural image statistics and low-complexity feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 103
  year: 2008
  end-page: 107
  ident: bib0085
  article-title: Conditional mutual information based feature selection
  publication-title: Proceedings of International Symposium on Knowledge Acquisition and Modeling
– year: 1998
  ident: bib0118
  article-title: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications
– start-page: 1159
  year: 2010
  end-page: 1166
  ident: bib0165
  article-title: Online streaming feature selection
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML)
– volume: 62
  start-page: 637
  year: 2015
  end-page: 646
  ident: bib0033
  article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 259
  year: 2011
  end-page: 264
  ident: bib0127
  article-title: Graph-based semi-supervised feature selection with application to automatic spam image identification
  publication-title: Computer Science for Environmental Engineering and EcoInformatics
– volume: 6
  start-page: 156
  year: 1984
  end-page: 170
  ident: bib0007
  article-title: A representation for shape based on peaks and ridges in the difference of low pass transform
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 205
  year: 2015
  end-page: 217
  ident: bib0169
  article-title: Deep feature selection: theory and application to identify enhancers and promoters
  publication-title: Proceedings of International Conference on Research in Computational Molecular Biology
– start-page: 136
  year: 2005
  end-page: 141
  ident: bib0021
  article-title: Decision tree classifier for network intrusion detection with GA-based feature selection
  publication-title: Proceedings of the 43rd ACM Southeast Conference
– year: 2004
  ident: bib0012
  article-title: Scalable discriminant feature selection for image retrieval and recognition
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 45
  start-page: 531
  year: 2012
  end-page: 539
  ident: bib0162
  article-title: An ensemble of filters and classifiers for microarray data classification
  publication-title: Pattern Recognit.
– start-page: 10
  year: 2000
  end-page: 15
  ident: bib0148
  article-title: Learning from imbalanced data sets: a comparison of various strategies
  publication-title: Proceedings of AAAI Workshop on Learning from Imbalanced Data Sets
– start-page: 313
  year: 2008
  end-page: 325
  ident: bib0151
  article-title: Robust feature selection using ensemble feature selection techniques
  publication-title: Proceedings of Machine Learning and Knowledge Discovery in Databases
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: bib0055
  article-title: Least angle regression
  publication-title: Ann. Stat.
– volume: 105
  start-page: 713
  year: 2010
  end-page: 726
  ident: bib0091
  article-title: A framework for feature selection in clustering
  publication-title: J. Am. Stat. Assoc.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0003
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 178
  year: 2012
  ident: bib0158
  article-title: Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification
  publication-title: BMC Bioinform.
– volume: 13
  start-page: 1083
  year: 1999
  end-page: 1101
  ident: bib0060
  article-title: Radial basis probabilistic neural networks: Model and application
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– year: 2010
  ident: bib0045
  article-title: Feature Selection Based on Information Theory
– year: 1996
  ident: bib0006
  article-title: Elements of Machine Learning
– volume: 39
  start-page: 6078
  year: 2012
  end-page: 6088
  ident: bib0083
  article-title: Feature subset selection with cumulate conditional mutual information minimization
  publication-title: Expert Syst. Appl.
– start-page: 800
  year: 2000
  end-page: 803
  ident: bib0111
  article-title: Unsupervised color texture feature extraction and selection for soccer image segmentation
  publication-title: Proceedings of International Conference on Image Processing
– start-page: 762
  year: 2003
  end-page: 769
  ident: bib0011
  article-title: Feature selection by maximum marginal diversity: optimality and implications for visual recognition
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 26
  start-page: 554
  year: 2010
  end-page: 560
  ident: bib0020
  article-title: Discriminative and informative features for biomolecular text mining with ensemble feature selection
  publication-title: Bioinformatics
– volume: 42
  start-page: 155
  year: 2006
  end-page: 165
  ident: bib0087
  article-title: Information gain and divergence-based feature selection for machine learning-based text categorization
  publication-title: Inf. Process. Manag.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib0042
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 4
  start-page: 255
  year: 2004
  end-page: 269
  ident: bib0025
  article-title: Using amino acid patterns to accurately predict translation initiation sites
  publication-title: In Silico Biol.
– volume: 250
  start-page: 45
  year: 2017
  end-page: 56
  ident: bib0076
  article-title: A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI
  publication-title: Neurocomputing
– volume: 97
  start-page: 245
  year: 1997
  end-page: 271
  ident: bib0001
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0057
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B
– volume: 38
  start-page: 7746
  year: 2011
  end-page: 7754
  ident: bib0161
  article-title: Reducing dimensionality in a database of sleep EEG arousals
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 14
  year: 2011
  end-page: 22
  ident: bib0112
  article-title: Unsupervised feature selection based on the distribution of features attributed to imbalanced data sets
  publication-title: Int. J. Artif. Intell. Expert Syst.
– start-page: 360
  year: 2016
  end-page: 366
  ident: bib0171
  article-title: Speeding up feature selection: a deep-inspired network pruning algorithm
  publication-title: Proceedings of International Joint Conference on Neural Networks (IJCNN)
– volume: 241
  start-page: 181
  year: 2017
  end-page: 190
  ident: bib0056
  article-title: Variational relevant sample-feature machine: a fully Bayesian approach for embedded feature selection
  publication-title: Neurocomputing
– start-page: 359
  year: 2000
  end-page: 366
  ident: bib0073
  article-title: Correlation-based feature selection of discrete and numeric class machine learning
  publication-title: Proceedings of 17th International Conference on Machine Learning
– start-page: 979
  year: 2011
  end-page: 984
  ident: bib0092
  article-title: Feature selection using hierarchical feature clustering
  publication-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management
– start-page: 196
  year: 2009
  end-page: 200
  ident: bib0115
  article-title: Univariate filter technique for unsupervised feature selection using a new laplacian score based local nearest neighbors
  publication-title: Proceedings of Asia-Pacific Conference on Information Processing
– volume: 5
  start-page: 845
  year: 2004
  end-page: 889
  ident: bib0120
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 13
  year: 2013
  end-page: 26
  ident: bib0149
  article-title: Class-imbalanced classifiers for high-dimensional data
  publication-title: Brief. Bioinform.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib0098
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: bib0061
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 3
  start-page: 1265
  year: 2003
  end-page: 1287
  ident: bib0089
  article-title: A divisive information-theoretic feature clustering algorithm for text classification
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 831
  year: 1996
  end-page: 836
  ident: bib0016
  article-title: Using discriminant eigenfeatures for image retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 503
  year: 2006
  end-page: 511
  ident: bib0101
  article-title: Correlation-based feature selection strategy in classification problems
  publication-title: Int. J. Appl. Math. Comput. Sci.
– start-page: 785
  year: 2011
  end-page: 792
  ident: bib0143
  article-title: Hierarchical semantic indexing for large scale image retrieval
  publication-title: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 64
  start-page: 141
  year: 2017
  end-page: 158
  ident: bib0071
  article-title: A survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit.
– year: 1995
  ident: 10.1016/j.neucom.2017.11.077_bib0015
  article-title: Efficient content-based image retrieval using automatic feature selection
– volume: 20
  start-page: 491
  year: 2015
  ident: 10.1016/j.neucom.2017.11.077_bib0100
  article-title: A feature selection method for prediction essential protein
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2015.7297748
– start-page: 979
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0092
  article-title: Feature selection using hierarchical feature clustering
– start-page: 724
  year: 1991
  ident: 10.1016/j.neucom.2017.11.077_bib0121
  article-title: Concept formation and attention
– volume: 33
  start-page: 1980
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0037
  article-title: Feature selection on node statistics based embedding of graphs
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.03.017
– start-page: 592
  year: 2003
  ident: 10.1016/j.neucom.2017.11.077_bib0163
  article-title: Online feature selection using grafting
– ident: 10.1016/j.neucom.2017.11.077_bib0004
– volume: 13
  start-page: 51
  year: 2002
  ident: 10.1016/j.neucom.2017.11.077_bib0024
  article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
  publication-title: Genome Inform.
– start-page: 1159
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0165
  article-title: Online streaming feature selection
– volume: 18
  start-page: 218
  year: 1996
  ident: 10.1016/j.neucom.2017.11.077_bib0086
  article-title: Divergence based feature selection for multimodal class densities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.481557
– start-page: 103
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0085
  article-title: Conditional mutual information based feature selection
– volume: 18
  start-page: 831
  year: 1996
  ident: 10.1016/j.neucom.2017.11.077_bib0016
  article-title: Using discriminant eigenfeatures for image retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.531802
– volume: 5
  start-page: 1531
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0043
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 1205
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0079
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– start-page: 136
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0021
  article-title: Decision tree classifier for network intrusion detection with GA-based feature selection
– volume: 2
  start-page: 14
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0112
  article-title: Unsupervised feature selection based on the distribution of features attributed to imbalanced data sets
  publication-title: Int. J. Artif. Intell. Expert Syst.
– start-page: 1313
  year: 1999
  ident: 10.1016/j.neucom.2017.11.077_bib0081
  article-title: Improved mutual information feature selector for neural networks in supervised learning
– start-page: 1123
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0131
  article-title: Graph-based semi-supervised weighted band selection for classification of hyperspectral data
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.neucom.2017.11.077_bib0155
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 250
  start-page: 45
  year: 2017
  ident: 10.1016/j.neucom.2017.11.077_bib0076
  article-title: A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.123
– year: 1996
  ident: 10.1016/j.neucom.2017.11.077_bib0063
– volume: 9
  start-page: 61
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0028
  article-title: Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection
  publication-title: Mol. Biosyst.
  doi: 10.1039/C2MB25327E
– year: 1995
  ident: 10.1016/j.neucom.2017.11.077_bib0126
– start-page: 41
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0027
  article-title: A novel unsupervised feature selection method for bioinformatics data sets through feature clustering
– volume: 3612
  start-page: 832
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0032
  article-title: Fault feature selection based on modified binary PSO with mutation and its application in chemical process fault diagnosis
  publication-title: Adv. Nat. Comput.
– volume: 43
  start-page: 2068
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0096
  article-title: Supervised feature selection by clustering using conditional mutual information-based distances
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.12.013
– volume: 26
  start-page: 554
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0020
  article-title: Discriminative and informative features for biomolecular text mining with ensemble feature selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq381
– volume: 10
  start-page: 457
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0031
  article-title: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2013.10
– start-page: 1
  year: 2006
  ident: 10.1016/j.neucom.2017.11.077_bib0040
  article-title: Information theory for Gabor feature selection for face recognition
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 24
  start-page: 175
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0068
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1368-0
– start-page: 664
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0133
  article-title: Manifold based fisher method for semi-supervised feature selection
– volume: 21
  start-page: 1033
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0046
  article-title: Discriminative semi-supervised feature selection via manifold regularization
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2047114
– volume: 163
  start-page: 103
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0103
  article-title: Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2003.03.019
– volume: 13
  start-page: 1083
  year: 1999
  ident: 10.1016/j.neucom.2017.11.077_bib0060
  article-title: Radial basis probabilistic neural networks: Model and application
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001499000604
– start-page: 1022
  year: 1993
  ident: 10.1016/j.neucom.2017.11.077_bib0072
  article-title: Multi-interval discretization of continuous-valued attributes for classification learning
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0042
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– start-page: 10
  year: 2000
  ident: 10.1016/j.neucom.2017.11.077_bib0148
  article-title: Learning from imbalanced data sets: a comparison of various strategies
– volume: 31
  start-page: 226
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0050
  article-title: A rough set approach to feature selection based on ant colony optimization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.10.013
– volume: 86
  start-page: 33
  year: 2015
  ident: 10.1016/j.neucom.2017.11.077_bib0069
  article-title: Recent advances and emerging challenges of feature selection in the context of big data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.05.014
– volume: 4
  start-page: 255
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0025
  article-title: Using amino acid patterns to accurately predict translation initiation sites
  publication-title: In Silico Biol.
  doi: 10.3233/ISB-00132
– volume: 24
  start-page: 833
  year: 2003
  ident: 10.1016/j.neucom.2017.11.077_bib0049
  article-title: Rough set methods in feature selection and recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(02)00196-4
– volume: 111
  start-page: 21
  year: 2016
  ident: 10.1016/j.neucom.2017.11.077_bib0147
  article-title: Feature selection methods for big data bioinformatics: a survey from the search perspective
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.08.014
– start-page: 196
  year: 2009
  ident: 10.1016/j.neucom.2017.11.077_bib0115
  article-title: Univariate filter technique for unsupervised feature selection using a new laplacian score based local nearest neighbors
– volume: 24
  start-page: 301
  year: 2002
  ident: 10.1016/j.neucom.2017.11.077_bib0113
  article-title: Unsupervised feature selection using feature similarity
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990133
– volume: 121
  start-page: 5
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0130
  article-title: A graph Laplacian based approach to semi-supervised feature selection for regression problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.028
– volume: 74
  start-page: 2941
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0034
  article-title: Feature selection for high-dimensional machinery fault diagnosis data using multiple models and Radial Basis Function networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.043
– volume: 64
  start-page: 141
  year: 2017
  ident: 10.1016/j.neucom.2017.11.077_bib0071
  article-title: A survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.003
– start-page: 1113
  year: 2009
  ident: 10.1016/j.neucom.2017.11.077_bib0145
  article-title: Feature hashing for large scale multitask learning
– year: 1998
  ident: 10.1016/j.neucom.2017.11.077_bib0118
– volume: 26
  start-page: 1131
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0140
  article-title: Efficient semi-supervised feature selection: constraint, relevance, and redundancy
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.86
– volume: 38
  start-page: 7746
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0161
  article-title: Reducing dimensionality in a database of sleep EEG arousals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.134
– volume: 13
  start-page: 178
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0158
  article-title: Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-13-178
– year: 2016
  ident: 10.1016/j.neucom.2017.11.077_bib0168
  article-title: Deep belief networks with feature selection for sentiment classification
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0107
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 186
  start-page: 73
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0052
  article-title: Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.09.027
– volume: 71
  start-page: 1842
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0128
  article-title: Locality sensitive semi-supervised feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.06.014
– volume: 43
  start-page: 2763
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0157
  article-title: Ensemble gene selection for cancer classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.02.008
– volume: 57
  start-page: 320
  year: 2001
  ident: 10.1016/j.neucom.2017.11.077_bib0041
  article-title: Model selection and inference: a practical information – theoretic approach
  publication-title: Biometrics
– start-page: 433
  year: 1999
  ident: 10.1016/j.neucom.2017.11.077_bib0123
  article-title: Model selection in unsupervised learning with applications to document clustering
– volume: 2
  start-page: 83
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0094
  article-title: Attribute clustering for grouping, selection, and classification of gene expression data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2005.17
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.neucom.2017.11.077_bib0003
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 241
  start-page: 181
  year: 2017
  ident: 10.1016/j.neucom.2017.11.077_bib0056
  article-title: Variational relevant sample-feature machine: a fully Bayesian approach for embedded feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.057
– start-page: 205
  year: 2015
  ident: 10.1016/j.neucom.2017.11.077_bib0169
  article-title: Deep feature selection: theory and application to identify enhancers and promoters
– volume: 47
  start-page: 3429
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0159
  article-title: Random forests with ensemble of feature spaces
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.04.001
– start-page: 507
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0116
  article-title: Laplacian score for feature selection
– volume: 105
  start-page: 713
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0091
  article-title: A framework for feature selection in clustering
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2010.tm09415
– volume: 28
  start-page: 15
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0014
  article-title: Investigation of efficient features for image recognition by neural networks,
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2011.12.002
– volume: 17
  start-page: 491
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0078
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.66
– start-page: 193
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0124
  article-title: Weighting method for feature selection in k-means
– year: 1999
  ident: 10.1016/j.neucom.2017.11.077_bib0110
  article-title: Handling large unsupervised data via dimensionality reduction
– volume: 19
  start-page: 2099
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0064
  article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2004370
– year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0002
– volume: 105
  start-page: 12
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0135
  article-title: Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.05.031
– volume: 23
  start-page: 1089
  year: 1990
  ident: 10.1016/j.neucom.2017.11.077_bib0010
  article-title: Rotation invariant image recognition using features selected via a systematic method
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(90)90005-6
– volume: 185
  start-page: 1026
  year: 2007
  ident: 10.1016/j.neucom.2017.11.077_bib0065
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 143
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0104
  article-title: Genetic algorithms combined with discriminant analysis for key variable identification
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(03)00029-5
– volume: 7
  start-page: 1861
  year: 2006
  ident: 10.1016/j.neucom.2017.11.077_bib0164
  article-title: Streamwise feature selection
  publication-title: J. Mach. Learn. Res.
– start-page: 762
  year: 2003
  ident: 10.1016/j.neucom.2017.11.077_bib0011
  article-title: Feature selection by maximum marginal diversity: optimality and implications for visual recognition
– start-page: 360
  year: 2016
  ident: 10.1016/j.neucom.2017.11.077_bib0171
  article-title: Speeding up feature selection: a deep-inspired network pruning algorithm
– year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0045
– year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0012
  article-title: Scalable discriminant feature selection for image retrieval and recognition
– volume: 47
  start-page: 3890
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0051
  article-title: Incremental feature selection based on rough set in dynamic incomplete data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.06.002
– volume: 5
  start-page: 329
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0146
  article-title: Efficient quadratic regularization for expression arrays
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxh010
– volume: 5
  start-page: 537
  year: 1994
  ident: 10.1016/j.neucom.2017.11.077_bib0080
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.298224
– start-page: 204
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0138
  article-title: Constrained laplacian score for semi-supervised feature selection
– volume: 25
  start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0026
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.181
– start-page: 259
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0127
  article-title: Graph-based semi-supervised feature selection with application to automatic spam image identification
– volume: 1
  start-page: 2425
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0053
  article-title: Rough set and Tabu search based feature selection for credit scoring
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2010.04.273
– start-page: 134
  year: 2015
  ident: 10.1016/j.neucom.2017.11.077_bib0125
  article-title: Unsupervised gene selection using particle swarm optimization and k-means
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0058
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.: Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 46
  start-page: 3315
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0084
  article-title: Mutual information-based method for selecting informative feature sets
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.04.021
– volume: 40
  start-page: 6241
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0109
  article-title: Feature subset selection filter–wrapper based on low quality data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.05.051
– start-page: 133
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0038
  article-title: Gaussian based particle swarm optimisation and statistical clustering for feature selection
– start-page: 151
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0036
  article-title: First order statistics based feature selection: a diverse and powerful family of feature seleciton techniques
– volume: 35
  start-page: 1178
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0166
  article-title: Online feature selection with streaming features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.197
– volume: 9
  start-page: 1106
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0152
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2012.33
– start-page: 248
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0129
  article-title: Graph Laplacian for semi-supervised feature selection in regression problems
– volume: 41
  start-page: 1440
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0139
  article-title: Constraint Score: A new filter method for feature selection with pairwise constraints
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.10.009
– volume: 344
  start-page: 1492
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0061
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– start-page: 577
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0090
  article-title: Exploration and reduction of the feature space by hierarchical clustering
– volume: 3
  start-page: 1265
  year: 2003
  ident: 10.1016/j.neucom.2017.11.077_bib0089
  article-title: A divisive information-theoretic feature clustering algorithm for text classification
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 503
  year: 2006
  ident: 10.1016/j.neucom.2017.11.077_bib0101
  article-title: Correlation-based feature selection strategy in classification problems
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 14
  start-page: 13
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0149
  article-title: Class-imbalanced classifiers for high-dimensional data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbs006
– start-page: 785
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0143
  article-title: Hierarchical semantic indexing for large scale image retrieval
– volume: 62
  start-page: 637
  year: 2015
  ident: 10.1016/j.neucom.2017.11.077_bib0033
  article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2327589
– volume: 19
  start-page: 57
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0039
  article-title: Statistics-based wrapper for feature selection: an implementation on financial distress identification with support vector machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.018
– year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0054
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10.1016/j.neucom.2017.11.077_bib0059
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 6
  start-page: 156
  year: 1984
  ident: 10.1016/j.neucom.2017.11.077_bib0007
  article-title: A representation for shape based on peaks and ridges in the difference of low pass transform
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767500
– start-page: 275
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0047
  article-title: Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease
– volume: 13
  start-page: 971
  year: 2016
  ident: 10.1016/j.neucom.2017.11.077_bib0070
  article-title: Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2015.2478454
– start-page: 313
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0151
  article-title: Robust feature selection using ensemble feature selection techniques
– volume: 39
  start-page: 6078
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0083
  article-title: Feature subset selection with cumulate conditional mutual information minimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.12.003
– volume: 21
  start-page: 887
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0105
  article-title: Feature selection based-on genetic algorithm for image annotation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2008.03.051
– volume: 45
  start-page: 531
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0162
  article-title: An ensemble of filters and classifiers for microarray data classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.06.006
– volume: 41
  start-page: 3813
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0048
  article-title: Locally linear discriminant embedding: an efficient method for face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.05.027
– year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0062
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2017.11.077_bib0114
  article-title: An unsupervised attribute clustering algorithm for unsupervised feature selection
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.neucom.2017.11.077_bib0057
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 101
  start-page: 32
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0088
  article-title: Divergence-based feature selection for separate classes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.036
– start-page: 527
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0132
  article-title: Semi_Fisher score: a semi-supervised method for feature selection
– volume: 15
  start-page: 331
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0008
  article-title: Extracting nonlinear features for multispectral images by FCMC and KPCA
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2004.12.004
– volume: 31
  start-page: 228
  year: 2009
  ident: 10.1016/j.neucom.2017.11.077_bib0035
  article-title: Natural image statistics and low-complexity feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.77
– volume: 97
  start-page: 245
  year: 1997
  ident: 10.1016/j.neucom.2017.11.077_bib0001
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 39
  start-page: 85
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0017
  article-title: A simultaneous feature adaptation and feature selection method for content-based image retrieval systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.10.011
– volume: 12
  start-page: 2321
  year: 2015
  ident: 10.1016/j.neucom.2017.11.077_bib0172
  article-title: Deep learning based feature selection for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2475299
– start-page: 944
  year: 2002
  ident: 10.1016/j.neucom.2017.11.077_bib0019
  article-title: Improved feature selection approach TFIDF in text mining
– volume: 2
  start-page: 229
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0117
  article-title: Evolutionary methods for unsupervised feature selection using Sammon's stress function
  publication-title: Fuzzy Inf. Eng.
  doi: 10.1007/s12543-010-0047-4
– volume: 20
  start-page: 1425
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0013
  article-title: Boosting color feature selection for color face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2093906
– volume: 173
  start-page: 346
  year: 2016
  ident: 10.1016/j.neucom.2017.11.077_bib0097
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.123
– start-page: 296
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0023
  article-title: Using feature selection for intrusion detection system
– volume: 2
  start-page: 108
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0009
  article-title: Using FCMC, FVS, and PCA techniques for feature extraction of multispectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.844169
– start-page: 800
  year: 2000
  ident: 10.1016/j.neucom.2017.11.077_bib0111
  article-title: Unsupervised color texture feature extraction and selection for soccer image segmentation
– volume: 5
  start-page: 845
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0120
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 1184
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0022
  article-title: Mutual information-based feature selection for intrusion detection systems
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.01.002
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0055
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 12
  start-page: 687
  year: 1999
  ident: 10.1016/j.neucom.2017.11.077_bib0044
  article-title: Data visualization and feature selection: new algorithms for nongaussian data
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 249
  year: 1992
  ident: 10.1016/j.neucom.2017.11.077_bib0074
  article-title: A practical approach to feature selection
– start-page: 171
  year: 1994
  ident: 10.1016/j.neucom.2017.11.077_bib0075
  article-title: Estimating attributes: analysis and extensions of RELIEF
– volume: 35
  start-page: 25
  year: 1999
  ident: 10.1016/j.neucom.2017.11.077_bib0119
  article-title: Concept learning and feature selection based on square-error clustering
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007567018844
– volume: 29
  start-page: 110
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0067
  article-title: Feature selection for clustering: a revie
  publication-title: Data Clust.: Algorithms Appl.
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.neucom.2017.11.077_bib0098
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 24
  start-page: 465
  year: 2012
  ident: 10.1016/j.neucom.2017.11.077_bib0102
  article-title: Feature selection based on class-dependent densities for high-dimensional binary data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.263
– start-page: 264
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0095
  article-title: A supervised feature selection algorithm through minimum spanning tree clustering
– start-page: 1542
  year: 2016
  ident: 10.1016/j.neucom.2017.11.077_bib0170
  article-title: Layerwise feature selection in stacked sparse auto-encoder for tumor type prediction
– start-page: 329
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0134
  article-title: A semi-supervised method for feature selection
– start-page: 359
  year: 2000
  ident: 10.1016/j.neucom.2017.11.077_bib0073
  article-title: Correlation-based feature selection of discrete and numeric class machine learning
– volume: 20
  start-page: 832
  year: 1998
  ident: 10.1016/j.neucom.2017.11.077_bib0153
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– start-page: 37
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0066
  article-title: Feature selection for classification: a review
  publication-title: Data Classif.: Algorithms Appl.
– volume: 22
  start-page: 1855
  year: 2006
  ident: 10.1016/j.neucom.2017.11.077_bib0029
  article-title: Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl190
– volume: 54
  start-page: 1535
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0156
  article-title: Ensemble classification based on generalized additive models
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.12.013
– volume: 32
  start-page: 29
  year: 2008
  ident: 10.1016/j.neucom.2017.11.077_bib0106
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume: 17
  start-page: 70
  year: 2013
  ident: 10.1016/j.neucom.2017.11.077_bib0093
  article-title: Feature selection with attributes clustering by maximal information coefficient
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.05.011
– start-page: 293
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0136
  article-title: Semi-supervised feature selection based on label propagation and subset selection
– start-page: 660
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0167
  article-title: Towards scalable and accurate online feature selection for big data
– start-page: 823
  year: 2007
  ident: 10.1016/j.neucom.2017.11.077_bib0077
  article-title: Supervised feature selection via dependence estimation
– start-page: 379
  year: 1999
  ident: 10.1016/j.neucom.2017.11.077_bib0150
  article-title: Feature selection for ensembles
– volume: 26
  start-page: 392
  year: 2010
  ident: 10.1016/j.neucom.2017.11.077_bib0160
  article-title: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp630
– year: 1996
  ident: 10.1016/j.neucom.2017.11.077_bib0006
– volume: 26
  start-page: 487
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0108
  article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-010-0288-x
– start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2017.11.077_bib0142
  article-title: Semi-supervised minimum redundancy maximum relevance feature selection for audio classification
– volume: 15
  start-page: 1371
  year: 2014
  ident: 10.1016/j.neucom.2017.11.077_bib0144
  article-title: Towards ultrahigh dimensional feature selection for big data
  publication-title: J. Mach. Learn. Res.
– start-page: 245
  year: 1994
  ident: 10.1016/j.neucom.2017.11.077_bib0005
  article-title: Selection of relevant features in machine learning
– start-page: 92
  year: 1997
  ident: 10.1016/j.neucom.2017.11.077_bib0122
  article-title: Efficient feature selection in conceptual clustering
– volume: 51
  start-page: 6166
  year: 2007
  ident: 10.1016/j.neucom.2017.11.077_bib0154
  article-title: Classification by ensembles from random partitions of high-dimensional data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.12.043
– volume: 5
  start-page: 361
  year: 2004
  ident: 10.1016/j.neucom.2017.11.077_bib0018
  article-title: Rcv1: a new benchmark collection for text categorization research
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 599
  year: 2009
  ident: 10.1016/j.neucom.2017.11.077_bib0030
  article-title: Tumor clustering using nonnegative matrix factorization with gene selection
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2018115
– volume: 61
  start-page: 511
  year: 2017
  ident: 10.1016/j.neucom.2017.11.077_bib0141
  article-title: An efficient semi-supervised representatives feature selection algorithm based on information theory
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.08.011
– volume: 2
  start-page: 110
  year: 2005
  ident: 10.1016/j.neucom.2017.11.077_bib0099
  article-title: Semisupervised learning for molecular profiling
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2005.28
– volume: 32
  start-page: 656
  year: 2011
  ident: 10.1016/j.neucom.2017.11.077_bib0137
  article-title: Constraint scores for semi-supervised feature selection: a comparative study
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.12.014
– start-page: 417
  year: 2007
  ident: 10.1016/j.neucom.2017.11.077_bib0082
  article-title: Conditional mutual information based feature selection for classification task
– volume: 42
  start-page: 155
  year: 2006
  ident: 10.1016/j.neucom.2017.11.077_bib0087
  article-title: Information gain and divergence-based feature selection for machine learning-based text categorization
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2004.08.006
SSID ssj0017129
Score 2.7031171
Snippet High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 70
SubjectTerms Data mining
Dimensionality reduction
Feature selection
Machine learning
Title Feature selection in machine learning: A new perspective
URI https://dx.doi.org/10.1016/j.neucom.2017.11.077
Volume 300
WOSCitedRecordID wos000432490900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbapYde6FuFPuRDr0FObMcOtxWiahFCPdBqb5GxnTaopIjdBX4-43hsllLRcuglSqzEecynmcl4Zj5CPtSutiV3opDOVoWwhhWmg0MtjfWmY06MyZjf9tXBgZ7Nmi9YXTIf6QTUMOjLy-b0v4oaxkDYoXT2HuLOk8IA7IPQYQtih-0_CT44dWFVYD4y3GAq48mYM-kTScT3WJAOLnXoW7xabZkc1bFphx0pHzCYMD0JPRVcAFAOHuxEMuu9PsNjfxmXcnpz4fvraD0GpX-EvPesaPKoR_OJ0YdSh7BmLHFPYcRKFuAj3tConLEVnRiJQdC6RuaYW3o7hhCOtwa_DEk8cCe1FZqrIsXLjTbZv5mvnFSY8tWO2zhLG2aBP5wWZnlI1iolGz0ha9PPu7O9vNCkyiq2Y8TXSNWVYwrg7af5s_ey4pEcPiXr-CtBpxECz8gDPzwnTxJNB0Wt_YJoRATNiKD9QBERNCFim04p4IGu4OEl-fpx93DnU4GEGYXlqloUoipNbZ2ykh1pXje2O-pkoJMxTNTSceE7LW3JDFO1F9Y503iuZVWD9dXKcf6KTIZfg39NaOcqw5kRXDshvAcvGmxBzV2nuZfO-w3C04doLXaTD6QmP9u7xLBBinzVaeym8pfzVfrGLXqE0dNrATh3Xrl5zzu9IY-v4f2WTBZnS_-OPLLni35-9h5RcwVy-4M-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+in+machine+learning%3A+A+new+perspective&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Cai%2C+Jie&rft.au=Luo%2C+Jiawei&rft.au=Wang%2C+Shulin&rft.au=Yang%2C+Sheng&rft.date=2018-07-26&rft.issn=0925-2312&rft.volume=300&rft.spage=70&rft.epage=79&rft_id=info:doi/10.1016%2Fj.neucom.2017.11.077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2017_11_077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon