On integral representations and asymptotics of some hypergeometric functions in two variables
The leading asymptotic behaviour of the Humbert functions , , of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the...
Uloženo v:
| Vydáno v: | Integral transforms and special functions Ročník 29; číslo 2; s. 95 - 112 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
01.02.2018
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1065-2469, 1476-8291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The leading asymptotic behaviour of the Humbert functions
,
,
of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the asymptotics is then found from a Tauberian theorem. Some integrals of the Humbert functions are also analysed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1065-2469 1476-8291 |
| DOI: | 10.1080/10652469.2017.1404596 |