On integral representations and asymptotics of some hypergeometric functions in two variables

The leading asymptotic behaviour of the Humbert functions , , of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral transforms and special functions Jg. 29; H. 2; S. 95 - 112
Hauptverfasser: Wald, Sascha, Henkel, Malte
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 01.02.2018
Taylor & Francis Ltd
Schlagworte:
ISSN:1065-2469, 1476-8291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The leading asymptotic behaviour of the Humbert functions , , of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the asymptotics is then found from a Tauberian theorem. Some integrals of the Humbert functions are also analysed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1065-2469
1476-8291
DOI:10.1080/10652469.2017.1404596