On integral representations and asymptotics of some hypergeometric functions in two variables

The leading asymptotic behaviour of the Humbert functions , , of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Integral transforms and special functions Ročník 29; číslo 2; s. 95 - 112
Hlavní autori: Wald, Sascha, Henkel, Malte
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 01.02.2018
Taylor & Francis Ltd
Predmet:
ISSN:1065-2469, 1476-8291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The leading asymptotic behaviour of the Humbert functions , , of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the asymptotics is then found from a Tauberian theorem. Some integrals of the Humbert functions are also analysed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1065-2469
1476-8291
DOI:10.1080/10652469.2017.1404596