On integral representations and asymptotics of some hypergeometric functions in two variables
The leading asymptotic behaviour of the Humbert functions , , of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the...
Uložené v:
| Vydané v: | Integral transforms and special functions Ročník 29; číslo 2; s. 95 - 112 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
01.02.2018
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1065-2469, 1476-8291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The leading asymptotic behaviour of the Humbert functions
,
,
of two variables is found, when the absolute values of the two independent variables become simultaneously large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the asymptotics is then found from a Tauberian theorem. Some integrals of the Humbert functions are also analysed. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1065-2469 1476-8291 |
| DOI: | 10.1080/10652469.2017.1404596 |