A Constrained Particle Swarm Optimization Algorithm with Oracle Penalty Method

To solve constrained optimization problems, an Oracle penalty method-based comprehensive learning particle swarm optimization (OBCLPSO) algorithm was proposed. First, original Oracle penalty was modified. Secondly, the modified Oracle penalty method was combine with comprehensive learning particle s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Mechanics and Materials Ročník 303-306; s. 1519 - 1523
Hlavní autori: Dong, Ming Gang, Cheng, Xiao Hui, Niu, Qin Zhou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Zurich Trans Tech Publications Ltd 01.02.2013
Predmet:
ISBN:3037856521, 9783037856529
ISSN:1660-9336, 1662-7482, 1662-7482
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To solve constrained optimization problems, an Oracle penalty method-based comprehensive learning particle swarm optimization (OBCLPSO) algorithm was proposed. First, original Oracle penalty was modified. Secondly, the modified Oracle penalty method was combine with comprehensive learning particle swarm optimization algorithm. Finally, experimental results and comparisons were given to demonstrate the optimization performances of OBCLPSO. The results show that the proposed algorithm is a very competitive approach for constrained optimization problems.
Bibliografia:Selected papers from the 2012 International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2012), December 26-27, 2012, Guilin, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISBN:3037856521
9783037856529
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.303-306.1519