A numerically stable least squares solution to the quadratic programming problem

The strictly convex quadratic programming problem is transformed to the least distance problem — finding the solution of minimum norm to the system of linear inequalities. This problem is equivalent to the linear least squares problem on the positive orthant. It is solved using orthogonal transforma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Central European journal of mathematics Ročník 6; číslo 1; s. 171 - 178
Hlavní autor: Übi, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg SP Versita 01.03.2008
Versita
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1895-1074, 2391-5455, 1644-3616, 2391-5455
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The strictly convex quadratic programming problem is transformed to the least distance problem — finding the solution of minimum norm to the system of linear inequalities. This problem is equivalent to the linear least squares problem on the positive orthant. It is solved using orthogonal transformations, which are memorized as products. Like in the revised simplex method, an auxiliary matrix is used for computations. Compared to the modified-simplex type methods, the presented dual algorithm QPLS requires less storage and solves ill-conditioned problems more precisely. The algorithm is illustrated by some difficult problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1895-1074
2391-5455
1644-3616
2391-5455
DOI:10.2478/s11533-008-0012-1