The Kirsch-Kress method for inverse scattering by infinite locally rough interfaces

This paper is concerned with the inverse problem of reconstructing an infinite, locally rough interface from the scattered field measured on line segments above and below the interface in two dimensions. We extend the Kirsch-Kress method originally developed for inverse obstacle scattering problems...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable analysis Ročník 96; číslo 1; s. 85 - 107
Hlavní autoři: Li, Jianliang, Sun, Guanying, Zhang, Bo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 02.01.2017
Taylor & Francis Ltd
Témata:
ISSN:0003-6811, 1563-504X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper is concerned with the inverse problem of reconstructing an infinite, locally rough interface from the scattered field measured on line segments above and below the interface in two dimensions. We extend the Kirsch-Kress method originally developed for inverse obstacle scattering problems to the above inverse transmission problem with unbounded interfaces. To this end, we reformulate our inverse problem as a nonlinear optimization problem with a Tikhonov regularization term. We prove the convergence of the optimization problem when the regularization parameter tends to zero. Finally, numerical experiments are carried out to show the validity of the inversion algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0003-6811
1563-504X
DOI:10.1080/00036811.2016.1192141