The Kirsch-Kress method for inverse scattering by infinite locally rough interfaces
This paper is concerned with the inverse problem of reconstructing an infinite, locally rough interface from the scattered field measured on line segments above and below the interface in two dimensions. We extend the Kirsch-Kress method originally developed for inverse obstacle scattering problems...
Uloženo v:
| Vydáno v: | Applicable analysis Ročník 96; číslo 1; s. 85 - 107 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
02.01.2017
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0003-6811, 1563-504X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper is concerned with the inverse problem of reconstructing an infinite, locally rough interface from the scattered field measured on line segments above and below the interface in two dimensions. We extend the Kirsch-Kress method originally developed for inverse obstacle scattering problems to the above inverse transmission problem with unbounded interfaces. To this end, we reformulate our inverse problem as a nonlinear optimization problem with a Tikhonov regularization term. We prove the convergence of the optimization problem when the regularization parameter tends to zero. Finally, numerical experiments are carried out to show the validity of the inversion algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0003-6811 1563-504X |
| DOI: | 10.1080/00036811.2016.1192141 |