Feature extraction for hyperspectral image classification: a review
Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands. Hyperspectral image classification has observed a great interest among researchers in remote sensing community. High dimensionality provides r...
Saved in:
| Published in: | International journal of remote sensing Vol. 41; no. 16; pp. 6248 - 6287 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Taylor & Francis
17.08.2020
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands. Hyperspectral image classification has observed a great interest among researchers in remote sensing community. High dimensionality provides rich spectral information for the classification process. But due to dense sampling, some of the bands may contain redundant information. Sometimes, spectral information alone may not be sufficient to obtain desired accuracy of results. Therefore, often spatial and spectral information is integrated for better accuracy. However, unlike spectral information, the spatial information is not directly available with the image. Additional efforts are needed to extract spatial information. Feature extraction is an important step in a classification framework. It has following major objectives: redundancy reduction, dimensionality reduction (usually but not always), enhancing discriminative information, and modelling of spatial features. The spectral feature extraction process transforms the original data to a new space of a different dimension, enhancing the class separability without significant loss of information. Various mathematical techniques are applied for modelling spatial features based on pixel spatial neighbourhood relations. In this paper, a review of the major feature extraction techniques is presented. Experimental results are presented for two benchmark hyperspectral images to evaluate different feature extraction techniques for various parameters. |
|---|---|
| AbstractList | Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands. Hyperspectral image classification has observed a great interest among researchers in remote sensing community. High dimensionality provides rich spectral information for the classification process. But due to dense sampling, some of the bands may contain redundant information. Sometimes, spectral information alone may not be sufficient to obtain desired accuracy of results. Therefore, often spatial and spectral information is integrated for better accuracy. However, unlike spectral information, the spatial information is not directly available with the image. Additional efforts are needed to extract spatial information. Feature extraction is an important step in a classification framework. It has following major objectives: redundancy reduction, dimensionality reduction (usually but not always), enhancing discriminative information, and modelling of spatial features. The spectral feature extraction process transforms the original data to a new space of a different dimension, enhancing the class separability without significant loss of information. Various mathematical techniques are applied for modelling spatial features based on pixel spatial neighbourhood relations. In this paper, a review of the major feature extraction techniques is presented. Experimental results are presented for two benchmark hyperspectral images to evaluate different feature extraction techniques for various parameters. |
| Author | Kumar, Brajesh Singh, Manoj Kumar Gupta, Ashwani Dikshit, Onkar |
| Author_xml | – sequence: 1 givenname: Brajesh orcidid: 0000-0001-8100-7287 surname: Kumar fullname: Kumar, Brajesh email: bkumar@mjpru.ac.in, sainibrajesh@gmail.com organization: MJP Rohilkhand University – sequence: 2 givenname: Onkar orcidid: 0000-0003-3213-8218 surname: Dikshit fullname: Dikshit, Onkar organization: Indian Institute of Technology Kanpur – sequence: 3 givenname: Ashwani orcidid: 0000-0002-2199-8346 surname: Gupta fullname: Gupta, Ashwani organization: MJP Rohilkhand University – sequence: 4 givenname: Manoj Kumar orcidid: 0000-0003-3119-1244 surname: Singh fullname: Singh, Manoj Kumar organization: MJP Rohilkhand University |
| BookMark | eNqFkE1LAzEQhoNUsK3-BGHBi5etmWw-dvWiFKtCwYueQ5ommrLd1GRr7b83a-ulBz0NDM87zPsMUK_xjUHoHPAIcImvMNACgMOIYJJWouCiIEeoDwXnOasw9FC_Y_IOOkGDGBcYYy6Y6KPxxKh2HUxmvtqgdOt8k1kfsvftyoS4Mjpt68wt1ZvJdK1idNZp1WHXmcqC-XRmc4qOraqjOdvPIXqd3L-MH_Pp88PT-G6a60JAm2su5mU1p2TGGLOUEKLBcmKrqrDKYMCcGUFVBYRqOiNUANUFnnFuS0xmqdMQXe7uroL_WJvYyqWL2tS1aoxfR0mqkgMTtKQJvThAF34dmvSdJBQEVAQoS9TNjtLBxxiMldq1P-VSa1dLwLITLH8Fy06w3AtOaXaQXoUkKmz_zd3ucq5Jppdq40M9l63a1j7YoBrtoiz-PvEN4TCR0w |
| CitedBy_id | crossref_primary_10_1080_01431161_2023_2221802 crossref_primary_10_1007_s11042_021_11375_0 crossref_primary_10_3390_photonics10070708 crossref_primary_10_1364_AO_511443 crossref_primary_10_3389_fpls_2023_1209500 crossref_primary_10_1080_01431161_2022_2093621 crossref_primary_10_1080_01431161_2023_2229495 crossref_primary_10_3390_rs16111957 crossref_primary_10_1109_ACCESS_2024_3420089 crossref_primary_10_1080_01431161_2023_2277168 crossref_primary_10_3390_rs16162988 crossref_primary_10_1016_j_marpolbul_2025_118134 crossref_primary_10_1049_ell2_12109 crossref_primary_10_1016_j_jhazmat_2025_138502 crossref_primary_10_3390_rs17132230 crossref_primary_10_3389_fpls_2024_1409821 crossref_primary_10_1038_s41598_025_90228_4 crossref_primary_10_1016_j_eswa_2023_121032 crossref_primary_10_1117_1_JRS_16_034523 crossref_primary_10_1016_j_ecoinf_2025_103051 crossref_primary_10_3390_jimaging9040087 crossref_primary_10_3390_rs16122229 crossref_primary_10_1109_JSTARS_2023_3283342 crossref_primary_10_1109_JSTARS_2023_3337112 crossref_primary_10_3390_rs16214050 crossref_primary_10_1080_01431161_2022_2147036 crossref_primary_10_1109_JSTARS_2025_3584799 crossref_primary_10_3390_rs16162914 crossref_primary_10_1007_s00521_021_06532_3 crossref_primary_10_1109_JSTARS_2024_3372138 crossref_primary_10_1016_j_neucom_2024_128271 crossref_primary_10_1007_s11760_025_03857_7 crossref_primary_10_1109_TGRS_2025_3564459 crossref_primary_10_3390_rs14030505 crossref_primary_10_3390_rs15194797 crossref_primary_10_3390_rs16234544 crossref_primary_10_1016_j_engappai_2020_103952 crossref_primary_10_1007_s41064_023_00255_x crossref_primary_10_3390_rs15102497 crossref_primary_10_1080_01431161_2023_2224099 crossref_primary_10_1016_j_tifs_2021_04_042 crossref_primary_10_3390_rs16183399 crossref_primary_10_1007_s11063_021_10665_w crossref_primary_10_1155_2021_8103183 crossref_primary_10_1007_s00521_021_06121_4 crossref_primary_10_1016_j_swevo_2024_101614 crossref_primary_10_1109_LGRS_2023_3268776 crossref_primary_10_1111_grs_12379 crossref_primary_10_1016_j_jhazmat_2023_130722 crossref_primary_10_1007_s41870_023_01317_4 crossref_primary_10_1109_TGRS_2022_3205966 crossref_primary_10_1080_01431161_2022_2133577 crossref_primary_10_1080_20964471_2025_2540712 crossref_primary_10_3390_rs16132431 crossref_primary_10_1016_j_eswa_2022_118995 crossref_primary_10_1109_TGRS_2023_3257865 crossref_primary_10_1109_TGRS_2024_3500000 crossref_primary_10_1109_LGRS_2023_3330608 crossref_primary_10_1016_j_eswa_2025_126594 crossref_primary_10_3390_rs17030547 crossref_primary_10_1080_10106049_2022_2063400 crossref_primary_10_1109_JSTARS_2021_3133021 crossref_primary_10_1016_j_eswa_2025_127611 crossref_primary_10_1109_TIP_2022_3191461 crossref_primary_10_1016_j_eswa_2024_123937 crossref_primary_10_3390_math13010099 crossref_primary_10_3390_rs17132305 crossref_primary_10_1007_s00521_022_07933_8 crossref_primary_10_3390_app13042684 crossref_primary_10_1109_TGRS_2022_3177216 crossref_primary_10_1016_j_saa_2024_125419 crossref_primary_10_1080_01431161_2024_2408037 crossref_primary_10_1109_TGRS_2025_3547381 crossref_primary_10_1016_j_lwt_2024_116570 crossref_primary_10_1371_journal_pone_0313473 crossref_primary_10_1371_journal_pone_0264780 crossref_primary_10_1016_j_iswa_2025_200513 crossref_primary_10_1016_j_eswa_2023_122172 crossref_primary_10_1177_15589250241302435 crossref_primary_10_3390_rs16122149 crossref_primary_10_1080_01431161_2023_2234091 crossref_primary_10_1007_s11104_024_07017_7 crossref_primary_10_3390_diagnostics15182404 crossref_primary_10_1016_j_apenergy_2024_122691 crossref_primary_10_3390_f14091838 crossref_primary_10_3390_rs13234921 crossref_primary_10_3390_rs15133232 crossref_primary_10_1109_ACCESS_2024_3388457 crossref_primary_10_1016_j_compag_2023_108255 crossref_primary_10_1109_TGRS_2022_3202363 crossref_primary_10_3390_app142311053 crossref_primary_10_1109_JSTARS_2025_3539791 crossref_primary_10_1109_TGRS_2024_3415773 crossref_primary_10_1371_journal_pone_0330640 crossref_primary_10_3390_electronics14010102 crossref_primary_10_1080_01431161_2021_2005840 crossref_primary_10_3390_rs15153841 crossref_primary_10_1016_j_cosrev_2023_100584 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_1016_j_dcan_2025_04_001 crossref_primary_10_3390_jimaging6120132 crossref_primary_10_1016_j_culher_2025_06_014 crossref_primary_10_1007_s11368_024_03886_8 crossref_primary_10_3390_s21186002 crossref_primary_10_1109_JSTARS_2024_3520960 crossref_primary_10_1109_TCI_2025_3555137 crossref_primary_10_1109_TGRS_2023_3328263 crossref_primary_10_1007_s12145_024_01378_4 crossref_primary_10_3390_e27080869 crossref_primary_10_1007_s41348_022_00660_1 crossref_primary_10_1016_j_marpolbul_2025_117665 crossref_primary_10_1016_j_jiixd_2025_04_002 crossref_primary_10_1038_s41598_024_76808_w crossref_primary_10_1016_j_compag_2024_108942 crossref_primary_10_1080_01431161_2023_2275325 crossref_primary_10_1016_j_eswa_2024_124751 crossref_primary_10_3390_rs15153855 crossref_primary_10_1016_j_infrared_2022_104470 crossref_primary_10_3390_s21041182 crossref_primary_10_3390_rs17030351 crossref_primary_10_1109_JSTARS_2025_3571226 crossref_primary_10_1016_j_compag_2025_110916 crossref_primary_10_3390_app13031298 crossref_primary_10_3390_rs17152727 crossref_primary_10_1038_s41598_022_25404_x crossref_primary_10_1016_j_asr_2023_04_025 crossref_primary_10_1007_s00371_024_03728_1 crossref_primary_10_1007_s10489_023_04934_5 crossref_primary_10_1016_j_jsames_2025_105722 crossref_primary_10_3389_feart_2024_1488504 crossref_primary_10_1007_s00477_024_02884_z crossref_primary_10_1109_ACCESS_2025_3575699 crossref_primary_10_3390_rs14071737 crossref_primary_10_1016_j_isprsjprs_2021_09_014 crossref_primary_10_1007_s12652_024_04782_2 |
| Cites_doi | 10.1109/LGRS.2011.2128854 10.1109/LGRS.2003.822879 10.1109/TGRS.2002.804721 10.1109/TGRS.2016.2584107 10.1109/TGRS.2016.2553842 10.1155/2016/2183569 10.1109/TGRS.2003.810712 10.1109/TGRS.2006.881801 10.1109/LGRS.2014.2375188 10.1109/MGRS.2019.2911100 10.1109/36.803411 10.1109/MGRS.2018.2793873 10.1109/JSTARS.2014.2329474 10.1109/JSTARS.4609443 10.1109/36.885200 10.1109/JSTARS.2017.2767185 10.1016/j.engappai.2017.10.015 10.1109/TGRS.2004.842292 10.1109/TGRS.2003.822750 10.1016/j.knosys.2010.07.003 10.1109/JSTARS.2013.2265697 10.1109/TGRS.2014.2306687 10.1109/TPAMI.1983.4767461 10.1016/j.asoc.2018.08.049 10.1109/TIT.1962.1057692 10.1109/TIP.2010.2076296 10.1109/TGRS.2008.2008308 10.1109/TGRS.2012.2223704 10.1109/T-C.1974.224051 10.1109/TGRS.2018.2794326 10.1109/TGRS.2017.2778343 10.1109/JSTARS.2014.2329792 10.1109/LGRS.2005.848511 10.1016/j.neucom.2009.09.011 10.1109/TNN.2008.2005601 10.1109/TGRS.2017.2698503 10.1109/TGRS.2004.825578 10.1002/0471723800 10.1109/LGRS.2017.2759168 10.1109/LGRS.2015.2482520 10.1109/TGRS.2006.886177 10.1016/j.rse.2007.12.014 10.1109/TII.2012.2205397 10.1109/TGRS.2009.2031812 10.1109/CONIELECOMP.2016.7438573 10.1109/TGRS.36 10.1016/j.patcog.2008.03.012 10.1162/089976600300014980 10.1109/JSTARS.2012.2203587 10.1109/TGRS.2003.811076 10.1109/LGRS.2010.2091253 10.1109/TGRS.2016.2543748 10.1109/LGRS.2017.2686878 10.1109/JSTARS.2014.2329330 10.1109/JPROC.2012.2229082 10.1109/TGRS.2005.846865 10.1109/TPAMI.2002.1017623 10.1109/TGRS.2006.864389 10.1109/21.229456 10.1109/JURSE.2015.7120517 10.1109/TGRS.2004.830549 10.1109/TGRS.2015.2478379 10.1109/JSTARS.2015.2388577 10.1109/TGRS.2005.863297 10.1109/36.934071 10.1109/TGRS.2011.2157166 10.1109/LGRS.2013.2251316 10.1109/JSTARS.2014.2328618 10.1109/TGRS.2012.2197860 10.1016/j.rse.2003.12.013 10.1109/LGRS.2012.2226426 10.1109/LGRS.2015.2476498 10.1080/2150704X.2016.1151568 10.1109/TGRS.2008.922034 10.1109/TIT.1968.1054102 10.1109/TGRS.2012.2209657 10.1109/TSMC.1973.4309314 10.1109/TGRS.2016.2642951 10.1109/LGRS.2012.2191761 10.1002/0471221317 10.1109/36.789637 10.1109/36.3001 10.1109/TGRS.2004.830170 10.1016/j.asoc.2010.11.024 10.1109/ACCESS.2017.2706363 10.1109/TGRS.2007.904951 10.1016/j.patcog.2012.08.011 10.1109/TGRS.2010.2046494 10.1109/TGRS.2016.2593463 10.1162/089976698300017467 10.1109/36.295042 10.1109/JSTARS.2011.2176721 10.1080/01431161.2017.1348636 10.1109/TGRS.2014.2361618 |
| ContentType | Journal Article |
| Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2020.1736732 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 6287 |
| ExternalDocumentID | 10_1080_01431161_2020_1736732 1736732 |
| Genre | Review Article |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c371t-c67d89d42b555f4222c1f62f993fae01065e74a9124c4b24714c30b66f802b673 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544434600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:16:45 EDT 2025 Wed Aug 13 06:10:12 EDT 2025 Tue Nov 18 22:27:39 EST 2025 Sat Nov 29 06:13:43 EST 2025 Mon Oct 20 23:45:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-c67d89d42b555f4222c1f62f993fae01065e74a9124c4b24714c30b66f802b673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3119-1244 0000-0001-8100-7287 0000-0003-3213-8218 0000-0002-2199-8346 |
| PQID | 2417192145 |
| PQPubID | 2045515 |
| PageCount | 40 |
| ParticipantIDs | proquest_miscellaneous_2986157484 crossref_citationtrail_10_1080_01431161_2020_1736732 informaworld_taylorfrancis_310_1080_01431161_2020_1736732 proquest_journals_2417192145 crossref_primary_10_1080_01431161_2020_1736732 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-17 |
| PublicationDateYYYYMMDD | 2020-08-17 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_3_50_1 e_1_3_3_77_1 e_1_3_3_39_1 e_1_3_3_16_1 e_1_3_3_58_1 e_1_3_3_92_1 e_1_3_3_12_1 e_1_3_3_31_1 Krizhevsky A. (e_1_3_3_48_1) 2012 e_1_3_3_54_1 e_1_3_3_73_1 e_1_3_3_96_1 e_1_3_3_61_1 e_1_3_3_88_1 e_1_3_3_9_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_80_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_84_1 e_1_3_3_101_1 e_1_3_3_30_1 e_1_3_3_76_1 e_1_3_3_99_1 Benediktsson J. A. (e_1_3_3_8_1) 2016 Joliffe I. (e_1_3_3_44_1) 2002 e_1_3_3_38_1 e_1_3_3_91_1 e_1_3_3_15_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_72_1 e_1_3_3_95_1 e_1_3_3_11_1 e_1_3_3_53_1 e_1_3_3_41_1 e_1_3_3_87_1 e_1_3_3_60_1 Ma L. (e_1_3_3_62_1) 2010; 48 e_1_3_3_49_1 e_1_3_3_100_1 e_1_3_3_26_1 e_1_3_3_68_1 Duda R. O. (e_1_3_3_19_1) 2001 e_1_3_3_45_1 e_1_3_3_83_1 e_1_3_3_104_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_64_1 e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_98_1 e_1_3_3_71_1 e_1_3_3_79_1 e_1_3_3_18_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_90_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_94_1 e_1_3_3_40_1 e_1_3_3_63_1 Bach F. R. (e_1_3_3_2_1) 2003; 3 Huang H. (e_1_3_3_35_1) 2010; 48 e_1_3_3_7_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_103_1 e_1_3_3_97_1 e_1_3_3_51_1 e_1_3_3_78_1 e_1_3_3_70_1 e_1_3_3_17_1 e_1_3_3_13_1 e_1_3_3_59_1 e_1_3_3_36_1 e_1_3_3_93_1 e_1_3_3_55_1 e_1_3_3_32_1 e_1_3_3_74_1 Sugiyama M. (e_1_3_3_86_1) 2007; 8 e_1_3_3_89_1 e_1_3_3_6_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_47_1 e_1_3_3_81_1 e_1_3_3_20_1 e_1_3_3_66_1 e_1_3_3_43_1 e_1_3_3_85_1 e_1_3_3_102_1 |
| References_xml | – ident: e_1_3_3_58_1 doi: 10.1109/LGRS.2011.2128854 – ident: e_1_3_3_40_1 doi: 10.1109/LGRS.2003.822879 – ident: e_1_3_3_9_1 doi: 10.1109/TGRS.2002.804721 – ident: e_1_3_3_14_1 doi: 10.1109/TGRS.2016.2584107 – ident: e_1_3_3_94_1 doi: 10.1109/TGRS.2016.2553842 – ident: e_1_3_3_96_1 doi: 10.1155/2016/2183569 – ident: e_1_3_3_45_1 doi: 10.1109/TGRS.2003.810712 – ident: e_1_3_3_4_1 doi: 10.1109/TGRS.2006.881801 – ident: e_1_3_3_103_1 doi: 10.1109/LGRS.2014.2375188 – ident: e_1_3_3_87_1 doi: 10.1109/MGRS.2019.2911100 – ident: e_1_3_3_11_1 doi: 10.1109/36.803411 – ident: e_1_3_3_59_1 doi: 10.1109/MGRS.2018.2793873 – ident: e_1_3_3_70_1 doi: 10.1109/JSTARS.2014.2329474 – ident: e_1_3_3_73_1 doi: 10.1109/JSTARS.4609443 – volume: 48 start-page: 4099 issue: 11 year: 2010 ident: e_1_3_3_62_1 article-title: Local Manifold Learning Based K-Nearest Neighbor for Hyperspectral Image Classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – ident: e_1_3_3_39_1 doi: 10.1109/36.885200 – ident: e_1_3_3_46_1 doi: 10.1109/JSTARS.2017.2767185 – volume: 8 start-page: 1027 year: 2007 ident: e_1_3_3_86_1 article-title: Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis publication-title: Journal of Machine Learning and Research – ident: e_1_3_3_13_1 doi: 10.1016/j.engappai.2017.10.015 – ident: e_1_3_3_3_1 doi: 10.1109/TGRS.2004.842292 – volume-title: Spectral-Spatial Classification of Hyperspectral Remote Sensing Images year: 2016 ident: e_1_3_3_8_1 – ident: e_1_3_3_56_1 doi: 10.1109/TGRS.2003.822750 – ident: e_1_3_3_57_1 doi: 10.1016/j.knosys.2010.07.003 – ident: e_1_3_3_89_1 doi: 10.1109/JSTARS.2013.2265697 – ident: e_1_3_3_71_1 doi: 10.1109/TGRS.2014.2306687 – ident: e_1_3_3_25_1 doi: 10.1109/TPAMI.1983.4767461 – ident: e_1_3_3_53_1 doi: 10.1016/j.asoc.2018.08.049 – ident: e_1_3_3_34_1 doi: 10.1109/TIT.1962.1057692 – ident: e_1_3_3_68_1 doi: 10.1109/TIP.2010.2076296 – volume: 3 start-page: 1 issue: 1 year: 2003 ident: e_1_3_3_2_1 article-title: Kernel Independent Component Analysis publication-title: Journal of Machine Learning Research – ident: e_1_3_3_52_1 doi: 10.1109/TGRS.2008.2008308 – ident: e_1_3_3_91_1 doi: 10.1109/TGRS.2012.2223704 – ident: e_1_3_3_24_1 doi: 10.1109/T-C.1974.224051 – ident: e_1_3_3_85_1 doi: 10.1109/TGRS.2018.2794326 – ident: e_1_3_3_31_1 doi: 10.1109/TGRS.2017.2778343 – ident: e_1_3_3_22_1 doi: 10.1109/JSTARS.2014.2329792 – ident: e_1_3_3_5_1 doi: 10.1109/LGRS.2005.848511 – ident: e_1_3_3_36_1 doi: 10.1016/j.neucom.2009.09.011 – ident: e_1_3_3_21_1 doi: 10.1109/TNN.2008.2005601 – ident: e_1_3_3_97_1 doi: 10.1109/TGRS.2017.2698503 – ident: e_1_3_3_51_1 doi: 10.1109/TGRS.2004.825578 – ident: e_1_3_3_54_1 doi: 10.1002/0471723800 – ident: e_1_3_3_88_1 doi: 10.1109/LGRS.2017.2759168 – volume: 48 start-page: 4034 issue: 11 year: 2010 ident: e_1_3_3_35_1 article-title: Double Nearest Proportion Feature Extraction for Hyperspectral-image Classification publication-title: IEEE Geoscience and Remote Sensing Letters – ident: e_1_3_3_90_1 doi: 10.1109/LGRS.2015.2482520 – ident: e_1_3_3_80_1 doi: 10.1109/TGRS.2006.886177 – ident: e_1_3_3_27_1 doi: 10.1016/j.rse.2007.12.014 – ident: e_1_3_3_100_1 doi: 10.1109/TII.2012.2205397 – ident: e_1_3_3_98_1 doi: 10.1109/TGRS.2009.2031812 – ident: e_1_3_3_26_1 doi: 10.1109/CONIELECOMP.2016.7438573 – ident: e_1_3_3_104_1 doi: 10.1109/TGRS.36 – volume-title: Principal Component Analysis year: 2002 ident: e_1_3_3_44_1 – ident: e_1_3_3_67_1 doi: 10.1016/j.patcog.2008.03.012 – ident: e_1_3_3_7_1 doi: 10.1162/089976600300014980 – ident: e_1_3_3_28_1 doi: 10.1109/JSTARS.2012.2203587 – ident: e_1_3_3_84_1 doi: 10.1109/TGRS.2003.811076 – ident: e_1_3_3_65_1 doi: 10.1109/LGRS.2010.2091253 – ident: e_1_3_3_102_1 doi: 10.1109/TGRS.2016.2543748 – ident: e_1_3_3_77_1 doi: 10.1109/LGRS.2017.2686878 – ident: e_1_3_3_15_1 doi: 10.1109/JSTARS.2014.2329330 – ident: e_1_3_3_42_1 doi: 10.1109/JPROC.2012.2229082 – ident: e_1_3_3_66_1 doi: 10.1109/TGRS.2005.846865 – ident: e_1_3_3_20_1 doi: 10.1109/TGRS.36 – ident: e_1_3_3_69_1 doi: 10.1109/TPAMI.2002.1017623 – ident: e_1_3_3_12_1 doi: 10.1109/TGRS.2006.864389 – ident: e_1_3_3_55_1 doi: 10.1109/21.229456 – ident: e_1_3_3_49_1 doi: 10.1109/JURSE.2015.7120517 – ident: e_1_3_3_47_1 doi: 10.1109/TGRS.2004.830549 – ident: e_1_3_3_78_1 doi: 10.1109/TGRS.2015.2478379 – ident: e_1_3_3_16_1 doi: 10.1109/JSTARS.2015.2388577 – ident: e_1_3_3_93_1 doi: 10.1109/TGRS.2005.863297 – ident: e_1_3_3_17_1 doi: 10.1109/36.934071 – ident: e_1_3_3_82_1 doi: 10.1109/TGRS.2011.2157166 – ident: e_1_3_3_99_1 doi: 10.1109/LGRS.2013.2251316 – ident: e_1_3_3_61_1 doi: 10.1109/JSTARS.2014.2328618 – ident: e_1_3_3_101_1 doi: 10.1109/TGRS.2012.2197860 – ident: e_1_3_3_30_1 doi: 10.1016/j.rse.2003.12.013 – volume-title: Pattern Classification year: 2001 ident: e_1_3_3_19_1 – ident: e_1_3_3_74_1 doi: 10.1109/LGRS.2012.2226426 – ident: e_1_3_3_33_1 doi: 10.1109/LGRS.2015.2476498 – ident: e_1_3_3_64_1 doi: 10.1080/2150704X.2016.1151568 – ident: e_1_3_3_23_1 doi: 10.1109/TGRS.2008.922034 – ident: e_1_3_3_37_1 doi: 10.1109/TIT.1968.1054102 – ident: e_1_3_3_72_1 doi: 10.1109/TGRS.2012.2209657 – ident: e_1_3_3_32_1 doi: 10.1109/TSMC.1973.4309314 – ident: e_1_3_3_41_1 doi: 10.1109/TGRS.2016.2642951 – ident: e_1_3_3_83_1 doi: 10.1109/LGRS.2012.2191761 – start-page: 1097 volume-title: Proceedings of Advanced Neural Information Processing Systems (NIPS) year: 2012 ident: e_1_3_3_48_1 – ident: e_1_3_3_38_1 doi: 10.1002/0471221317 – ident: e_1_3_3_10_1 doi: 10.1109/36.789637 – ident: e_1_3_3_29_1 doi: 10.1109/36.3001 – ident: e_1_3_3_76_1 doi: 10.1109/TGRS.2004.830170 – ident: e_1_3_3_81_1 doi: 10.1016/j.asoc.2010.11.024 – ident: e_1_3_3_60_1 doi: 10.1109/ACCESS.2017.2706363 – ident: e_1_3_3_63_1 doi: 10.1109/TGRS.2007.904951 – ident: e_1_3_3_92_1 doi: 10.1016/j.patcog.2012.08.011 – ident: e_1_3_3_6_1 doi: 10.1109/TGRS.2010.2046494 – ident: e_1_3_3_75_1 doi: 10.1109/TGRS.2016.2593463 – ident: e_1_3_3_79_1 doi: 10.1162/089976698300017467 – ident: e_1_3_3_43_1 doi: 10.1109/36.295042 – ident: e_1_3_3_18_1 doi: 10.1109/JSTARS.2011.2176721 – ident: e_1_3_3_50_1 doi: 10.1080/01431161.2017.1348636 – ident: e_1_3_3_95_1 doi: 10.1109/TGRS.2014.2361618 |
| SSID | ssj0006757 |
| Score | 2.632047 |
| SecondaryResourceType | review_article |
| Snippet | Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands.... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6248 |
| SubjectTerms | Accuracy Classification Dimensions Feature extraction hyperspectral imagery Hyperspectral imaging image analysis Image classification Modelling Reduction Redundancy Reflectance Remote sensing Remote sensors Spatial data Spectra Wavelengths |
| Title | Feature extraction for hyperspectral image classification: a review |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2020.1736732 https://www.proquest.com/docview/2417192145 https://www.proquest.com/docview/2986157484 |
| Volume | 41 |
| WOSCitedRecordID | wos000544434600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBL34LU6nVPBabZu0abzJcHgaHibuVtI0YQPtpO0E_3vfa9LhEPGgx6Z9aZqPl99L3_s9Qq4Y5n8FO9mXYWx8xqXyhTHSp0jvBGsrSAqbbIKPx-l0Kh6dN2Ht3CrRhjaWKKLV1bi4ZV53HnE3WHsISAWsuwiKOE04RS2MxTCjJ6PnlS4GOGwDppGIE0S6GJ6falnbnda4S7_p6nYDGu3-Q9P3yI5Dn96dnS77ZEOXB2TLJUKffRySIULCZaU90NmVjXnwoHXeDMxVG5VZgfz8FbSQpxB4o6dRO7i3nvRsHMwReRrdT4YPvsuz4CvKw8ZXCS9SUbAoj-PY4JmQCk0SGYAuRmo0GmPNmRQABRTLI9jOmKJBniQmDaIcvuCY9MpFqU-Il2I2ylxpGUrFmAgEL0xBKU-ZYJKqvE9Y17-ZciTkmAvjJQs7rlLXQxn2UOZ6qE-uV2JvloXjNwHxdfCypj3-MDZXSUZ_kR10I525BV1nAHQ4UsexuE8uV7dhKeL_FVnqxRKeESngQyRnPf3D68_INl7iuXXIB6TXVEt9TjbVezOvq4t2en8CmRbxyQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4yhfnib3E6tYKv1bVJm8Y3GY6Jc08T9xbStGED3aTrBP9775p2bIjsQV-bXtomubvv0tx3hFwzrP8KcbKrvMC4jCvtCmOUS5HeCXSrFSa22ATv96PhUCznwuCxSoyhjSWKKGw1KjduRldH4m6xew-gCoR3PlziNOQUzPBmAL4W-fMHndeFNQZAbFOmkYoTZKosnt-6WfFPK-ylP6x14YI6u__x8ntkpwSgzr1dMftkI50ckHpZC330dUjaiArnWeqA2c5s2oMDr-eMIGK1iZkZyI_fwRA5GrE3HjYq5vfOUY5NhTkiL52HQbvrlqUWXE25l7s65EkkEubHQRAY3BbSngl9A-jFqBTjxiDlTAlAA5rFPng0pmkrDkMTtfwYvuCY1CbTSXpCnAgLUsY6VZ7SjImW4IlJKOURE0xRHTcIqwZY6pKHHMthvEmvoistR0jiCMlyhBrkZiH2YYk41gmI5dmTebEDYmy5EknXyDarqZalTs8kYB2O7HEsaJCrRTNoI_5iUZN0Ood7RAQQEflZT__w-EtS7w6ee7L32H86I9vYhNvYHm-SWp7N03OypT_z8Sy7KNb6N_9A9fM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6ior74W5xOreBrdW3SpvFNpkVRxh4m7i2kaYOCTuk6wf_euyYdDhEf9LXppe0luXyX3n1HyAnD-q_gJ_sqiIzPuNK-MEb5FOmdYG114twWm-C9XjIcir6LJhy7sEr0oY0liqhtNS7ut9w0EXFn2HsASAW8uxAucRpzClZ4AaBzjJN8kD5MjTHgYZsxjUycINMk8fzUzcz2NENe-s1Y1ztQuvYP775OVh389C7sfNkgc8Vokyy7SuiPH1uki5hwUhYeGO3SJj148HbeI_irNi2zBPmnFzBDnkbkjaFG9eiee8qziTDb5D69GnSvfVdowdeUB5WvY54nImdhFkWRwUMhHZg4NIBdjCrQa4wKzpQALKBZFsJ-xjTtZHFskk6YwRfskPnR66jYJV6C5SgzXahAacZER_Dc5JTyhAmmqM5ahDX6ldqxkGMxjGcZNGSlTkMSNSSdhlrkdCr2Zmk4fhMQXwdPVvX5h7HFSiT9RbbdjLR0K3osAelw5I5jUYscT5thLeIPFjUqXidwj0gAICI7694fHn9ElvqXqby76d3ukxVswTPsgLfJfFVOigOyqN-rp3F5WM_0TxGx9KU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+extraction+for+hyperspectral+image+classification%3A+a+review&rft.jtitle=International+journal+of+remote+sensing&rft.au=Kumar%2C+Brajesh&rft.au=Dikshit%2C+Onkar&rft.au=Gupta%2C+Ashwani&rft.au=Singh%2C+Manoj+Kumar&rft.date=2020-08-17&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=41&rft.issue=16&rft.spage=6248&rft.epage=6287&rft_id=info:doi/10.1080%2F01431161.2020.1736732&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |