Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization

Given an $m \times n$ matrix $M$ with $m \geqslant n$, it is shown that there exists a permutation $\Pi $ and an integer $k$ such that the QR factorization \[ M\Pi = Q\left( {\begin{array}{*{20}c} {A_k } & {B_k } \\ {} & {C_k } \\ \end{array} } \right) \] reveals the numerical rank of $M$: t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing Jg. 17; H. 4; S. 848 - 869
Hauptverfasser: Gu, Ming, Eisenstat, Stanley C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.07.1996
Schlagworte:
ISSN:1064-8275, 1095-7197
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an $m \times n$ matrix $M$ with $m \geqslant n$, it is shown that there exists a permutation $\Pi $ and an integer $k$ such that the QR factorization \[ M\Pi = Q\left( {\begin{array}{*{20}c} {A_k } & {B_k } \\ {} & {C_k } \\ \end{array} } \right) \] reveals the numerical rank of $M$: the $k \times k$ upper-triangular matrix $A_k $ is well conditioned, $\|C_k \|_2 $ is small, and $B_k $is linearly dependent on $A_k $ with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR (RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new algorithms are nearly as efficient as QR with column pivoting for most problems and take $O(mn^2 )$ floating-point operations in the worst case.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/0917055