Reinforcement Learning for Efficient and Tuning-Free Link Adaptation

Wireless links adapt the data transmission parameters to the dynamic channel state - this is called link adaptation . Classical link adaptation relies on tuning parameters that are challenging to configure for optimal link performance. Recently, reinforcement learning has been proposed to automate l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on wireless communications Ročník 21; číslo 2; s. 768 - 780
Hlavní autoři: Saxena, Vidit, Tullberg, Hugo, Jalden, Joakim
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1276, 1558-2248, 1558-2248
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Wireless links adapt the data transmission parameters to the dynamic channel state - this is called link adaptation . Classical link adaptation relies on tuning parameters that are challenging to configure for optimal link performance. Recently, reinforcement learning has been proposed to automate link adaptation, where the transmission parameters are modeled as discrete arms of a multi-armed bandit. In this context, we propose a latent learning model for link adaptation that exploits the correlation between data transmission parameters. Further, motivated by the recent success of Thompson sampling for multi-armed bandit problems, we propose a latent Thompson sampling (LTS) algorithm that quickly learns the optimal parameters for a given channel state. We extend LTS to fading wireless channels through a tuning-free mechanism that automatically tracks the channel dynamics. In numerical evaluations with fading wireless channels, LTS improves the link throughout by up to 100% compared to the state-of-the-art link adaptation algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
1558-2248
DOI:10.1109/TWC.2021.3098972