Advances in physics-informed deep learning for imaging data: a review of methods and applications

Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models typically requires large datasets, which are often unavailable for scientific research. In recent years, the integration of physics with DL, know...

Full description

Saved in:
Bibliographic Details
Published in:JPhys photonics Vol. 7; no. 4; pp. 42002 - 42018
Main Authors: Yogita, Yogita, Bocklitz, Thomas
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 31.10.2025
Subjects:
ISSN:2515-7647, 2515-7647
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models typically requires large datasets, which are often unavailable for scientific research. In recent years, the integration of physics with DL, known as physics-informed DL (PIDL), has emerged as a promising approach that enables models to learn from limited data. This survey provides an overview of recent advancements in PIDL methods, summarizing the various incorporation techniques and physical priors used in inverse imaging applications. This review highlights the strengths of PIDL, including improved interpretability, data efficiency, robustness, and generalization. It also discusses shortcomings, such as the lack of formulated physics representations, the need for domain-specific knowledge, and the high computational costs. Although PIDL is a relatively new methodology, it has significant potential for creating resilient, efficient, precise, and adaptable models for real-world applications. This survey offers insights into the fundamentals of PIDL in imaging and emphasizes its growing importance in bridging the gap between data-driven approaches and physics-based modeling in scientific research. As the field progresses, PIDL is likely to play an increasingly crucial role in advancing scientific understanding and real-world applications.
AbstractList Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models typically requires large datasets, which are often unavailable for scientific research. In recent years, the integration of physics with DL, known as physics-informed DL (PIDL), has emerged as a promising approach that enables models to learn from limited data. This survey provides an overview of recent advancements in PIDL methods, summarizing the various incorporation techniques and physical priors used in inverse imaging applications. This review highlights the strengths of PIDL, including improved interpretability, data efficiency, robustness, and generalization. It also discusses shortcomings, such as the lack of formulated physics representations, the need for domain-specific knowledge, and the high computational costs. Although PIDL is a relatively new methodology, it has significant potential for creating resilient, efficient, precise, and adaptable models for real-world applications. This survey offers insights into the fundamentals of PIDL in imaging and emphasizes its growing importance in bridging the gap between data-driven approaches and physics-based modeling in scientific research. As the field progresses, PIDL is likely to play an increasingly crucial role in advancing scientific understanding and real-world applications.
Author Yogita, Yogita
Bocklitz, Thomas
Author_xml – sequence: 1
  givenname: Yogita
  orcidid: 0009-0004-7673-2504
  surname: Yogita
  fullname: Yogita, Yogita
  organization: Leibniz Institute of Photonic Technology Department of Photonic Data Science, Albert Einstein-Straße 9, 07745 Jena, Germany
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0003-2778-6624
  surname: Bocklitz
  fullname: Bocklitz, Thomas
  organization: Leibniz Institute of Photonic Technology Department of Photonic Data Science, Albert Einstein-Straße 9, 07745 Jena, Germany
BookMark eNp1kc1P3DAQxS1EJT7vPVrqlRTbiT_CDSFokZC4wNma2JPFq107tQMV_z1eUkEvnGb09Js3TzNHZD-miIR85-wnZ8acC8llo1WnzwE5G_keOfyQ9v_rD8hpKWvGmNB9x4Q6JHDpXyA6LDREOj29luBKE-KY8hY99YgT3SDkGOKKVpGGLax2vYcZLijQjC8B_9I00i3OT8kXCtFTmKZNcDCHFMsJ-TbCpuDpv3pMHm-uH65-N3f3v26vLu8a12o-N9r5rvUKhFZiZGYwKGpOZQaUzknDZc-4Ae6klsAE9gPDoXJ67CsqjW6Pye3i6xOs7ZRr0vxqEwT7LqS8spDn4DZonfa65coww0RXLWDUIJzvB98NEnhbvX4sXlNOf56xzHadnnOs8W0rlNBcCcUqxRbK5VRKxvFjK2d29xe7O7zdHd4uf6kjZ8tISNOn55f4G2srjyw
Cites_doi 10.1016/j.cma.2022.115852
10.1109/CVPR.2019.01198
10.1002/mrm.29814
10.1364/OL.484867
10.1016/bs.mcb.2019.05.001
10.1016/j.oceaneng.2024.120260
10.1109/ICICSE55337.2022.9829002
10.1016/j.neucom.2023.126425
10.1016/j.ijfatigue.2022.107270
10.1364/OE.504606
10.1038/s41598-019-54176-0
10.1016/j.cma.2020.113547
10.1039/D3AY01131C
10.1016/j.optlastec.2023.110299
10.1007/s40747-021-00428-4
10.1109/TMI.2021.3077857
10.1021/ed039p333
10.1007/s40096-021-00444-y
10.1038/s41467–024–45856–1
10.1109/ICASSP49357.2023.10095076
10.1016/j.camwa.2023.10.002
10.1109/TKDE.2017.2720168
10.1109/MSP.2022.3183809
10.3390/bdcc6040140
10.1088/0031-9155/57/6/1459
10.1038/s42254-021-00314-5
10.1016/j.rinp.2023.106878
10.1145/3689037
10.1073/pnas.1119590109
10.1016/j.compbiomed.2022.105710
10.1146/annurev-bioeng-071516-044442
10.1109/TIM.2022.3193196
10.1038/s41592-020-01048-5
10.1364/PRJ.416551
10.1016/0167-2789(92)90242-F
10.1109/CVPR52688.2022.01476
10.1016/j.ijfatigue.2024.108566
10.1098/rsta.2020.0093
10.1364/oe.498217
10.1007/s10278-021-00556-w
10.1190/geo2023-0615.1
10.1364/oe.476781
10.48550/arXiv.2204.04210
10.1109/MSP.2006.1628876
10.1007/s40192-022-00283-2
10.1109/IJCNN52387.2021.9533606
10.1016/j.fmre.2024.06.014
10.1006/meth.1999.0873
10.1038/s44172-024-00331-z
10.1007/s11042-013-1586-6
10.1214/aoms/1177729694
10.1088/1361-6560/acbddf
10.1007/s11548-022-02567-6
10.1016/j.media.2022.102399
10.1038/s41592-018-0216-7
10.1038/s41467-023-41597-9
10.1109/ICASI60819.2024.10547886
10.1038/s42256-021-00420-0
10.3390/en16052343
10.1111/j.1365-2818.1991.tb03168.x
10.1016/j.jcp.2018.10.045
10.1364/AO.561658
10.3788/PI.2025.R03
10.1016/j.jcp.2020.109913
10.1073/pnas.79.8.2554
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7SP
7XB
88I
8FD
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1088/2515-7647/ae10f1
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2515-7647
ExternalDocumentID oai_doaj_org_article_c7d731680802487faf7a2cd9bd4b5a13
10_1088_2515_7647_ae10f1
jpphotonae10f1
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 101088997 (STAIN-IT)
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: Bundesministerium für Bildung und Forschung
  grantid: 13N15706 (LPI-BT2-FSU); 13N15710 (LPI-BT3-FSU)
  funderid: http://dx.doi.org/10.13039/501100002347
GroupedDBID 88I
AAFWJ
ABHWH
ABUWG
ACHIP
ADBBV
AFKRA
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
CCPQU
CJUJL
CRLBU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IJHAN
IOP
M2P
M~E
N5L
O3W
OK1
PHGZM
PHGZT
PIMPY
PJBAE
TSCCA
AAYXX
AEINN
AFFHD
CITATION
3V.
7SP
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c371t-7cd43d6a2762f08b8e200068be5cc58159018a1c575a02e9b0ebf087f9b8e5873
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595679500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2515-7647
IngestDate Mon Oct 20 21:14:03 EDT 2025
Tue Oct 21 14:13:23 EDT 2025
Sat Nov 29 07:04:30 EST 2025
Sat Oct 18 23:42:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-7cd43d6a2762f08b8e200068be5cc58159018a1c575a02e9b0ebf087f9b8e5873
Notes JPPHOTON-100904.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-7673-2504
0000-0003-2778-6624
OpenAccessLink https://www.proquest.com/docview/3262716260?pq-origsite=%requestingapplication%
PQID 3262716260
PQPubID 4916452
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_c7d731680802487faf7a2cd9bd4b5a13
proquest_journals_3262716260
iop_journals_10_1088_2515_7647_ae10f1
crossref_primary_10_1088_2515_7647_ae10f1
PublicationCentury 2000
PublicationDate 2025-10-31
PublicationDateYYYYMMDD 2025-10-31
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-31
  day: 31
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle JPhys photonics
PublicationTitleAbbrev JPhysPhotonics
PublicationTitleAlternate J. Phys. Photonics
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Lindsay (jpphotonae10f1bib66) 2023; 31
McNally (jpphotonae10f1bib6) 1999; 19
Bhadra (jpphotonae10f1bib20) 2021; 40
Kharazmi (jpphotonae10f1bib57) 2021; 374
Fu (jpphotonae10f1bib69) 2025; 64
Namaki (jpphotonae10f1bib53) 2023; 152
Eslahchi (jpphotonae10f1bib52) 2021; 17
Monakhova (jpphotonae10f1bib36) 2022
Moseley (jpphotonae10f1bib21) 2020
Sekh (jpphotonae10f1bib35) 2021; 3
Mondal (jpphotonae10f1bib44) 2024
Xypakis (jpphotonae10f1bib50) 2023; 31
van Herten (jpphotonae10f1bib54) 2022; 78
Dutta (jpphotonae10f1bib7) 2012; 57
Banerjee (jpphotonae10f1bib28) 2024
Kashinath (jpphotonae10f1bib31) 2021; 379
Qiao (jpphotonae10f1bib17) 2021; 18
Ilesanmi (jpphotonae10f1bib12) 2021; 7
Xiyuan (jpphotonae10f1bib10) 2025; 4
Shen (jpphotonae10f1bib18) 2017; 19
Hsu (jpphotonae10f1bib48) 2024
Li (jpphotonae10f1bib43) 2024; 189
Yahya (jpphotonae10f1bib2) 2014; 73
Sharma (jpphotonae10f1bib27) 2023; 16
Karniadakis (jpphotonae10f1bib22) 2021; 3
Zhu (jpphotonae10f1bib38) 2023; 68
Yang (jpphotonae10f1bib37) 2023; 40
Zhu (jpphotonae10f1bib40) 2021; 9
Tang (jpphotonae10f1bib8) 2012; 109
Karpatne (jpphotonae10f1bib25) 2017; 29
Chen (jpphotonae10f1bib60) 2022
Ning (jpphotonae10f1bib62) 2023; 52
Bharadwaja (jpphotonae10f1bib33) 2022; 11
Yang (jpphotonae10f1bib56) 2021; 425
Li (jpphotonae10f1bib59) 2024; 170
Buchholz (jpphotonae10f1bib13) 2019; 152
Shen (jpphotonae10f1bib45) 2022; 148
Tang (jpphotonae10f1bib61) 2023; 48
Weickert (jpphotonae10f1bib1) 1998
Chen (jpphotonae10f1bib41) 2023; 166
Hopfield (jpphotonae10f1bib24) 1982; 79
Xu (jpphotonae10f1bib64) 2023; 405
Burns (jpphotonae10f1bib51) 2023; 31
Schuster (jpphotonae10f1bib32) 2024; 89
Shen (jpphotonae10f1bib67) 2024
Jeong (jpphotonae10f1bib15) 2022; 35
Rudin (jpphotonae10f1bib3) 1992; 60
Shaw (jpphotonae10f1bib4) 1991; 163
Liu (jpphotonae10f1bib58) 2023
Thanasutives (jpphotonae10f1bib63) 2021
Zhang (jpphotonae10f1bib9) 2019
Lawal (jpphotonae10f1bib26) 2022; 6
Chen (jpphotonae10f1bib68) 2025; 319
Li (jpphotonae10f1bib46) 2024; 3
Sarder (jpphotonae10f1bib5) 2006; 23
Weigert (jpphotonae10f1bib14) 2018; 15
Swinehart (jpphotonae10f1bib47) 1962; 39
Yan (jpphotonae10f1bib42) 2022; 71
Bian (jpphotonae10f1bib65) 2023; 14
Liu (jpphotonae10f1bib55) 2023; 549
Xu (jpphotonae10f1bib11) 2024; 15
Kullback (jpphotonae10f1bib49) 1951; 22
Uzunova (jpphotonae10f1bib19) 2022; 17
Poirot (jpphotonae10f1bib29) 2019; 9
Raissi (jpphotonae10f1bib23) 2019; 378
Chen (jpphotonae10f1bib39) 2023; 90
Banerjee (jpphotonae10f1bib30) 2024; 57
Muddiman (jpphotonae10f1bib34) 2023; 15
Saqlain (jpphotonae10f1bib16) 2022
References_xml – volume: 405
  year: 2023
  ident: jpphotonae10f1bib64
  article-title: Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115852
– year: 2019
  ident: jpphotonae10f1bib9
  article-title: A Poisson-Gaussian denoising dataset with real fluorescence microscopy images
  doi: 10.1109/CVPR.2019.01198
– volume: 90
  start-page: 2362
  year: 2023
  ident: jpphotonae10f1bib39
  article-title: Physics‐informed deep learning for T2‐deblurred superresolution turbo spin echo MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29814
– volume: 48
  start-page: 2285
  year: 2023
  ident: jpphotonae10f1bib61
  article-title: DeepSCI: scalable speckle correlation imaging using physics-enhanced deep learning
  publication-title: Opt. Lett.
  doi: 10.1364/OL.484867
– volume: 152
  start-page: 277
  year: 2019
  ident: jpphotonae10f1bib13
  article-title: Content-aware image restoration for electron microscopy
  publication-title: Methods Cell Biol.
  doi: 10.1016/bs.mcb.2019.05.001
– volume: 319
  year: 2025
  ident: jpphotonae10f1bib68
  article-title: A two-step scaled physics-informed neural network for non-destructive testing of hull rib damage
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.120260
– year: 2022
  ident: jpphotonae10f1bib16
  article-title: DFGAN: image deblurring through fusing light-weight attention and gradient-based filters
  doi: 10.1109/ICICSE55337.2022.9829002
– volume: 549
  year: 2023
  ident: jpphotonae10f1bib55
  article-title: Bayesian physics-informed extreme learning machine for forward and inverse PDE problems with noisy data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126425
– volume: 166
  year: 2023
  ident: jpphotonae10f1bib41
  article-title: A physics-informed neural network approach to fatigue life prediction using small quantity of samples
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2022.107270
– volume: 31
  start-page: 43838
  year: 2023
  ident: jpphotonae10f1bib50
  article-title: Physics-informed deep neural network for image denoising
  publication-title: Opt. Express
  doi: 10.1364/OE.504606
– volume: 9
  year: 2019
  ident: jpphotonae10f1bib29
  article-title: Physics-informed deep learning for dual-energy computed tomography image processing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54176-0
– volume: 374
  year: 2021
  ident: jpphotonae10f1bib57
  article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113547
– volume: 15
  start-page: 4032
  year: 2023
  ident: jpphotonae10f1bib34
  article-title: Removing non-resonant background from broadband CARS using a physics-informed neural network
  publication-title: Anal. Methods
  doi: 10.1039/D3AY01131C
– year: 2024
  ident: jpphotonae10f1bib44
  article-title: Physics informed and data driven simulation of underwater images via residual learning
– volume: 170
  year: 2024
  ident: jpphotonae10f1bib59
  article-title: Hyperspectral imaging through scattering media via physics-informed learning
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2023.110299
– volume: 7
  start-page: 2179
  year: 2021
  ident: jpphotonae10f1bib12
  article-title: Methods for image denoising using convolutional neural network: a review
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00428-4
– volume: 40
  start-page: 3249
  year: 2021
  ident: jpphotonae10f1bib20
  article-title: On hallucinations in tomographic image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077857
– volume: 39
  start-page: 333
  year: 1962
  ident: jpphotonae10f1bib47
  article-title: The beer-lambert law
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed039p333
– volume: 17
  start-page: 1
  year: 2021
  ident: jpphotonae10f1bib52
  article-title: Application of finite difference method in solving a second-and fourth-order PDE blending denoising model
  publication-title: Math. Sci.
  doi: 10.1007/s40096-021-00444-y
– volume: 15
  start-page: 1456
  year: 2024
  ident: jpphotonae10f1bib11
  article-title: A compressive hyperspectral video imaging system using a single-pixel detector
  publication-title: Nat. Commun.
  doi: 10.1038/s41467–024–45856–1
– year: 2023
  ident: jpphotonae10f1bib58
  article-title: SD-PINN: physics informed neural networks for spatially dependent pdes
  doi: 10.1109/ICASSP49357.2023.10095076
– volume: 152
  start-page: 355
  year: 2023
  ident: jpphotonae10f1bib53
  article-title: The use of physics-informed neural network approach to image restoration via nonlinear PDE tools
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2023.10.002
– volume: 29
  start-page: 2318
  year: 2017
  ident: jpphotonae10f1bib25
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– volume: 40
  start-page: 129
  year: 2023
  ident: jpphotonae10f1bib37
  article-title: Physics-driven synthetic data learning for biomedical magnetic resonance: the imaging physics-based data synthesis paradigm for artificial intelligence
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2022.3183809
– year: 1998
  ident: jpphotonae10f1bib1
– volume: 6
  start-page: 140
  year: 2022
  ident: jpphotonae10f1bib26
  article-title: Physics-informed neural network (PINN) evolution and beyond: a systematic literature review and bibliometric analysis
  publication-title: Big Data Cogn. Comput.
  doi: 10.3390/bdcc6040140
– volume: 57
  start-page: 1459
  year: 2012
  ident: jpphotonae10f1bib7
  article-title: Joint L1 and total variation regularization for fluorescence molecular tomography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/6/1459
– volume: 3
  start-page: 422
  year: 2021
  ident: jpphotonae10f1bib22
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 52
  year: 2023
  ident: jpphotonae10f1bib62
  article-title: Image restoration for optical synthetic aperture system via variational physics-informed network
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106878
– volume: 57
  start-page: 1
  year: 2024
  ident: jpphotonae10f1bib30
  article-title: Physics-informed computer vision: a review and perspectives
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3689037
– volume: 109
  start-page: 8434
  year: 2012
  ident: jpphotonae10f1bib8
  article-title: Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1119590109
– volume: 148
  year: 2022
  ident: jpphotonae10f1bib45
  article-title: A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105710
– volume: 19
  start-page: 221
  year: 2017
  ident: jpphotonae10f1bib18
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 71
  start-page: 1
  year: 2022
  ident: jpphotonae10f1bib42
  article-title: Integration of a novel knowledge-guided loss function with an architecturally explainable network for machine degradation modelling
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3193196
– volume: 18
  start-page: 194
  year: 2021
  ident: jpphotonae10f1bib17
  article-title: Evaluation and development of deep neural networks for image super-resolution in optical microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01048-5
– volume: 9
  start-page: B210
  year: 2021
  ident: jpphotonae10f1bib40
  article-title: Imaging through unknown scattering media based on physics-informed learning
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.416551
– volume: 60
  start-page: 259
  year: 1992
  ident: jpphotonae10f1bib3
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– year: 2022
  ident: jpphotonae10f1bib60
  article-title: Aug-nerf: training stronger neural radiance fields with triple-level physically-grounded augmentations
  doi: 10.1109/CVPR52688.2022.01476
– volume: 189
  year: 2024
  ident: jpphotonae10f1bib43
  article-title: A modified physics-informed neural network to fatigue life prediction of deck-rib double-side welded joints
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2024.108566
– volume: 379
  year: 2021
  ident: jpphotonae10f1bib31
  article-title: Physics-informed machine learning: case studies for weather and climate modelling
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0093
– volume: 31
  start-page: 33026
  year: 2023
  ident: jpphotonae10f1bib66
  article-title: End-to-end physics-informed deep neural network optimization of sub-Nyquist lenses
  publication-title: Opt. Express
  doi: 10.1364/oe.498217
– volume: 35
  start-page: 137
  year: 2022
  ident: jpphotonae10f1bib15
  article-title: Systematic review of generative adversarial networks (GANs) for medical image classification and segmentation
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-021-00556-w
– volume: 89
  start-page: 1
  year: 2024
  ident: jpphotonae10f1bib32
  article-title: Review of physics-informed machine learning inversion of geophysical data
  publication-title: Geophysics
  doi: 10.1190/geo2023-0615.1
– volume: 31
  start-page: 8714
  year: 2023
  ident: jpphotonae10f1bib51
  article-title: Untrained, physics-informed neural networks for structured illumination microscopy
  publication-title: Opt. Express
  doi: 10.1364/oe.476781
– year: 2022
  ident: jpphotonae10f1bib36
  article-title: Dancing under the stars: video denoising in starlight
  doi: 10.48550/arXiv.2204.04210
– volume: 23
  start-page: 32
  year: 2006
  ident: jpphotonae10f1bib5
  article-title: Deconvolution methods for 3-D fluorescence microscopy images
  publication-title: IEEE Signal. Process. Mag.
  doi: 10.1109/MSP.2006.1628876
– volume: 11
  start-page: 607
  year: 2022
  ident: jpphotonae10f1bib33
  article-title: Physics-informed machine learning and uncertainty quantification for mechanics of heterogeneous materials
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-022-00283-2
– year: 2020
  ident: jpphotonae10f1bib21
  article-title: Solving the wave equation with physics-informed deep learning
– year: 2021
  ident: jpphotonae10f1bib63
  article-title: Adversarial multi-task learning enhanced physics-informed neural networks for solving partial differential equations
  doi: 10.1109/IJCNN52387.2021.9533606
– year: 2024
  ident: jpphotonae10f1bib67
  article-title: Physics-driven deep learning photoacoustic tomography
  publication-title: Fundam. Res.
  doi: 10.1016/j.fmre.2024.06.014
– volume: 19
  start-page: 373
  year: 1999
  ident: jpphotonae10f1bib6
  article-title: Three-dimensional imaging by deconvolution microscopy
  publication-title: Methods
  doi: 10.1006/meth.1999.0873
– volume: 3
  start-page: 186
  year: 2024
  ident: jpphotonae10f1bib46
  article-title: Microscopy image reconstruction with physics-informed denoising diffusion probabilistic model
  publication-title: Commun. Eng.
  doi: 10.1038/s44172-024-00331-z
– volume: 73
  start-page: 1843
  year: 2014
  ident: jpphotonae10f1bib2
  article-title: A blending method based on partial differential equations for image denoising
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-013-1586-6
– volume: 22
  start-page: 79
  year: 1951
  ident: jpphotonae10f1bib49
  article-title: On information and sufficiency
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729694
– volume: 68
  year: 2023
  ident: jpphotonae10f1bib38
  article-title: Physics-informed sinogram completion for metal artifact reduction in CT imaging
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/acbddf
– volume: 17
  start-page: 1213
  year: 2022
  ident: jpphotonae10f1bib19
  article-title: A systematic comparison of generative models for medical images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-022-02567-6
– volume: 78
  year: 2022
  ident: jpphotonae10f1bib54
  article-title: Physics-informed neural networks for myocardial perfusion MRI quantification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102399
– volume: 15
  start-page: 1090
  year: 2018
  ident: jpphotonae10f1bib14
  article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0216-7
– volume: 14
  start-page: 5902
  year: 2023
  ident: jpphotonae10f1bib65
  article-title: High-resolution single-photon imaging with physics-informed deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41597-9
– year: 2024
  ident: jpphotonae10f1bib48
  article-title: Attentive u-net with physics-informed loss for noise suppression in medical ultrasound images
  doi: 10.1109/ICASI60819.2024.10547886
– year: 2024
  ident: jpphotonae10f1bib28
  article-title: PINNs for Medical Image Analysis: a Survey
– volume: 3
  start-page: 1071
  year: 2021
  ident: jpphotonae10f1bib35
  article-title: Physics-based machine learning for subcellular segmentation in living cells
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00420-0
– volume: 16
  start-page: 2343
  year: 2023
  ident: jpphotonae10f1bib27
  article-title: A review of physics-informed machine learning in fluid mechanics
  publication-title: Energies
  doi: 10.3390/en16052343
– volume: 163
  start-page: 151
  year: 1991
  ident: jpphotonae10f1bib4
  article-title: The point‐spread function of a confocal microscope: its measurement and use in deconvolution of 3‐D data
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1991.tb03168.x
– volume: 378
  start-page: 686
  year: 2019
  ident: jpphotonae10f1bib23
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 64
  start-page: 4607
  year: 2025
  ident: jpphotonae10f1bib69
  article-title: Non-line-of-sight imaging under white-light illumination using physics-enhanced deep learning
  publication-title: Appl. Opt.
  doi: 10.1364/AO.561658
– volume: 4
  start-page: R03
  year: 2025
  ident: jpphotonae10f1bib10
  article-title: Revolutionizing optical imaging: computational imaging via deep learning
  publication-title: Photon. Insights
  doi: 10.3788/PI.2025.R03
– volume: 425
  year: 2021
  ident: jpphotonae10f1bib56
  article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109913
– volume: 79
  start-page: 2554
  year: 1982
  ident: jpphotonae10f1bib24
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.79.8.2554
SSID ssj0002794026
Score 2.30795
SecondaryResourceType review_article
Snippet Deep learning (DL) has transformed numerous application domains owing its ability to automatically extract features from data. However, training DL models...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 42002
SubjectTerms Deep learning
Imaging
inverse problems
machine learning
optical and photonic data
Physics
physics-informed deep learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHryIomK1Sg568BCa_UzirYrFgxQPCr2FfEoFt6Vb_f1Okq1WBL14DQMb3mwyk0zmPYTOa85s6auSGM5KUqpCE1E4Q6zwha21YbmOPLP3bDzmk4l4WJP6Cm_CEj1wAm5gmI3iSqEnFJJrrzxTubFC21JXKurV5pSJtcPUSyynCTgYreqSsJIGEMcrwuqSDZTLqM--xaFI1w_RZTqb_9iTY6AZ7aKdLkPEwzSzPbThmn2khqlW3-Jpg9NtREsS6amz2Do3x53-wzOGQTx9jepDODwAvcIKpw4VPPM4SUa3WDUWr1evD9DT6Pbx5o506gjEFCxbEmZsCXCqHLYzT7nmLnbdcO0qYyqehaZSrjID-ZiiuROaOg12zAswrTgrDtFmM2vcEcKVUqbOTE2NAdi0URqw1UJ5S1leM99Dlyus5DyRYMhYvOZcBlxlwFUmXHvoOoD5aRfoq-MAOFV2TpV_ObWHLsAVsltO7S8f66-c9WUMCWkeeLFqevwfczlB23nQ_I3xqo82l4s3d4q2zPty2i7O4m_3AcYv2uQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqwsDCQ4AoFOQBBgbTvO3AVBAVAyoMILpZfqIOpFVT-P2c7bSAQAiJLbLOcfTdxWf7fN8hdFwwqjObZ0QxmpFMpJKUqVFElzbVhVQ0kZ5n9pYOh2w0Ku9b6GKZCzOZNlP_GTwGouAAYXMhjvXAI-eEFhntCRNHFrY-KykDNw7GfJc-LQ9YErA02GA0ocmfOn5xRZ6xHxwMjPptWva-ZrDxr6_cROvNEhP3g-gWaplqG4l-CPbXeFzhcJxRk8CaajTWxkxxU0DiGUMjHr_48kXY3SA9xwKHFBc8sTjUnK6xqDT-HP7eQY-D64erG9KUVyAqpfGcUKUz0IdIYD60EZPM-LQdJk2uVM5il5XKRKxgQSeixJQyMhLkqC1BNGc03UXtalKZPYRzIVQRqyJSCkCXSshM5rIUVkc0KajtoNMF0nwaWDS4j34zxh1Q3AHFA1AddOlUsZRz_Ne-AVDmDcpcUe1LbrlMYdhyWWGpSJQupYaBRZx20Akohjf_Y_3LYN2Fqj-EYUWbOGKtItr_42sO0Fri6gJ7n9ZF7fns1RyiVfU2H9ezI2-X76Fl4yo
  priority: 102
  providerName: IOP Publishing
Title Advances in physics-informed deep learning for imaging data: a review of methods and applications
URI https://iopscience.iop.org/article/10.1088/2515-7647/ae10f1
https://www.proquest.com/docview/3262716260
https://doaj.org/article/c7d731680802487faf7a2cd9bd4b5a13
Volume 7
WOSCitedRecordID wos001595679500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: O3W
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: PIMPY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYotBIXSh-oS-nKh3LowdrEedjhUkEFKhIsEaIqPUX22EZ7aLJstv39jB3v0qoSl15ysEdylM-eceb1EfKxlMLkrsgZSJGzXGWaVZkFZiqXmVKD4Dr0mb0Q06m8va3q6HDrY1rlSicGRW068D7yCV4zuO92VCaf5_fMs0b56Gqk0HhGtvBmk_qUrkter30sHDdbEhjX0IoXTJS5iJFKPFuT9dhE2TRx6V-WKTTwR3sz6-b_aOlges5e_u9L75KdeOmkx8MueUU2bPuavAjJn9C_Iep4SATo6aylg6ujZ0NHVWuosXZOI7nEHcVBOvsZqI2ozy49oooO5S-0c3Tgo-6pag39MzT-lnw7O7358pVF6gUGmUiXTIDJESvFUVe6RGppQ0mP1LYAKGTqK1alSgEveyrhttKJ1SgnXIWihRTZHtlsu9a-I7RQCsoUygQA0dCgdK4LXSlnEsFL4Ubk0-qzN_Ohw0YTIuNSNh6ixkPUDBCNyInHZS3ne2OHgW5x18Sj1oAwgY7LVxHj75hTTigOptIGF1ZpNiKHiGoTz2r_xGIHK1AfhR8R3X96-j3Z5p4qOJi5A7K5XPyyH8hz-L2c9Ysx2To5ndbX4-ACGIddi8-r7DvO1OeX9Y8Hb-Py3Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb8RCAR_ogYO1ifOwg4RQeVStuqx6KFJvxs9qDyTLZgHxp_iNjO1kC0LqrQeuzihO4s8zE8_jA3hRC25LX5XUCF7SUhWaNoUz1Da-sLU2nOnYZ3bG53Nxetocb8GvsRYmpFWOOjEqatuZcEY-RTeDhW5HdfZm-ZUG1qgQXR0pNBIsjtzPH_jL1r8-fI_ru8vY_oeTdwd0YBWgpuD5mnJjS3wMxVAN-Exo4WK1itCuMqYSeSjGFCo36MeojLlGZ06jHPcNilaCF3jfK3C1DJ3FQqogO96c6TAEdxYZ3tBrqCivSz5ERnEvTzdjU-XyzOd_WcJIGID2bdEt_7EK0dTt3_7fPtIduDU41WQv7YK7sOXae3A9Jrea_j6ovZTo0JNFS9JRTk9Tx1hniXVuSQbyjDOCg2TxJVI3kZA9-4ooksp7SOdJ4tvuiWot-TP0_wA-Xcr7PYTttmvdIyCVUqbOTZ0Zg6uvjdKlrnSjvEWA1NxP4OW4zHKZOojIGPkXQgZIyAAJmSAxgbcBBxu50Ps7DnSrMzmoEmm4jXRjoUoafze98lwxYxttcWKVFxPYRRTJQRf1F0y2M4LoXPgcQY8vvvwcbhycfJzJ2eH86AncZIEWOZr0Hdher765p3DNfF8v-tWzuEcIfL5svP0Gh-RJPQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKqVAvhaog0hbqQzlwMNn1PuztLUCjVo1CDiBys_xEOXSzyqb9_R0_koJACInbyppdr77xerwez_chdF5zZkpXlURzVpJSFoo0hdXENK4wtdKMqsAzO2HTKZ_Pm1nSOQ21MMsuTf0f4DISBUcI04E4PoSIXBFWl2wobZ65fNgZ9wQ99Twlflh_Kb5vN1kojDb4yUjpyT_d_Es4Cqz9EGSg59-m5hBvxs__-01foIO01MSjaH6Idmx7hOQoJv17vGhx3NboSWRPtQYbazuchCR-YGjEi9sgY4T9SdILLHEsdcFLh6P2dI9la_DPafCX6Nv48uunK5JkFoguWL4mTJsS_CIpzIsu44rbUL7Dla20rnjuq1O5zDUs7GRGbaMyq8COuQZMK86KV2i3Xbb2NcKVlLrOdZ1pDcArLVWpKtVIZzJGa-YG6P0GbdFFNg0RsuCcCw-W8GCJCNYAffTu2Np5HuzQAEiLhLTQzATpLV8xDL9eTjomqTaNMtCxzIsBegfOEem77P_S2enG3Y_GsLKlnmCrzo7_8TFn6Nns81hMrqc3J2ifeqngEOZO0e56dWffoD19v170q7dhmD4A4j_okg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+physics-informed+deep+learning+for+imaging+data%3A+a+review+of+methods+and+applications&rft.jtitle=JPhys+photonics&rft.au=Yogita%2C+Yogita&rft.au=Bocklitz%2C+Thomas&rft.date=2025-10-31&rft.pub=IOP+Publishing&rft.issn=2515-7647&rft.eissn=2515-7647&rft.volume=7&rft.issue=4&rft.spage=042002&rft_id=info:doi/10.1088%2F2515-7647%2Fae10f1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-7647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-7647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-7647&client=summon