Solvability of systems of linear matrix equations subject to a matrix inequality
In this paper, the solvability conditions and the explicit expressions of the Hermitian solutions to the system of matrix equations and the Hermitian nonnegative definite solutions to the system of matrix equations are, respectively, put forward, by making full use of the generalized inverse and the...
Uložené v:
| Vydané v: | Linear & multilinear algebra Ročník 64; číslo 12; s. 2446 - 2462 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
01.12.2016
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0308-1087, 1563-5139 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, the solvability conditions and the explicit expressions of the Hermitian solutions to the system of matrix equations
and the Hermitian nonnegative definite solutions to the system of matrix equations
are, respectively, put forward, by making full use of the generalized inverse and the rank of matrices. As applications, some special cases of the above systems of matrix equations are considered. In addition, the maximal ranks and inertias of the Hermitian solutions are, respectively, presented. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0308-1087 1563-5139 |
| DOI: | 10.1080/03081087.2016.1160998 |