Solvability of systems of linear matrix equations subject to a matrix inequality

In this paper, the solvability conditions and the explicit expressions of the Hermitian solutions to the system of matrix equations and the Hermitian nonnegative definite solutions to the system of matrix equations are, respectively, put forward, by making full use of the generalized inverse and the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear & multilinear algebra Ročník 64; číslo 12; s. 2446 - 2462
Hlavní autori: Yu, Juan, Shen, Shu-qian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 01.12.2016
Taylor & Francis Ltd
Predmet:
ISSN:0308-1087, 1563-5139
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, the solvability conditions and the explicit expressions of the Hermitian solutions to the system of matrix equations and the Hermitian nonnegative definite solutions to the system of matrix equations are, respectively, put forward, by making full use of the generalized inverse and the rank of matrices. As applications, some special cases of the above systems of matrix equations are considered. In addition, the maximal ranks and inertias of the Hermitian solutions are, respectively, presented.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0308-1087
1563-5139
DOI:10.1080/03081087.2016.1160998