Solvability of systems of linear matrix equations subject to a matrix inequality

In this paper, the solvability conditions and the explicit expressions of the Hermitian solutions to the system of matrix equations and the Hermitian nonnegative definite solutions to the system of matrix equations are, respectively, put forward, by making full use of the generalized inverse and the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear & multilinear algebra Ročník 64; číslo 12; s. 2446 - 2462
Hlavní autoři: Yu, Juan, Shen, Shu-qian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.12.2016
Taylor & Francis Ltd
Témata:
ISSN:0308-1087, 1563-5139
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the solvability conditions and the explicit expressions of the Hermitian solutions to the system of matrix equations and the Hermitian nonnegative definite solutions to the system of matrix equations are, respectively, put forward, by making full use of the generalized inverse and the rank of matrices. As applications, some special cases of the above systems of matrix equations are considered. In addition, the maximal ranks and inertias of the Hermitian solutions are, respectively, presented.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0308-1087
1563-5139
DOI:10.1080/03081087.2016.1160998