Complex portfolio selection via convex mixed‐integer quadratic programming: a survey
In this paper, we review convex mixed‐integer quadratic programming approaches to deal with single‐objective single‐period mean‐variance portfolio selection problems under real‐world financial constraints. In the first part, after describing the original Markowitz's mean‐variance model, we anal...
Gespeichert in:
| Veröffentlicht in: | International transactions in operational research Jg. 26; H. 2; S. 389 - 414 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.03.2019
Wiley |
| Schlagworte: | |
| ISSN: | 0969-6016, 1475-3995 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we review convex mixed‐integer quadratic programming approaches to deal with single‐objective single‐period mean‐variance portfolio selection problems under real‐world financial constraints. In the first part, after describing the original Markowitz's mean‐variance model, we analyze its theoretical and empirical limitations, and summarize the possible improvements by considering robust and probabilistic models, and additional constraints. Moreover, we report some recent theoretical convexity results for the probabilistic portfolio selection problem. In the second part, we overview the exact algorithms proposed to solve the single‐objective single‐period portfolio selection problem with quadratic risk measure. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0969-6016 1475-3995 |
| DOI: | 10.1111/itor.12541 |