Random Sampling for Subspace Face Recognition

Issue Title: Special Issue: Computer Vision and Pattern Recognition-CVPR 2004 Subspace face recognition often suffers from two problems: (1) the training sample set is small compared with the high dimensional feature vector; (2) the performance is sensitive to the subspace dimension. Instead of purs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 70; číslo 1; s. 91 - 104
Hlavní autoři: Wang, Xiaogang, Tang, Xiaoou
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.10.2006
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Issue Title: Special Issue: Computer Vision and Pattern Recognition-CVPR 2004 Subspace face recognition often suffers from two problems: (1) the training sample set is small compared with the high dimensional feature vector; (2) the performance is sensitive to the subspace dimension. Instead of pursuing a single optimal subspace, we develop an ensemble learning framework based on random sampling on all three key components of a classification system: the feature space, training samples, and subspace parameters. Fisherface and Null Space LDA (N-LDA) are two conventional approaches to address the small sample size problem. But in many cases, these LDA classifiers are overfitted to the training set and discard some useful discriminative information. By analyzing different overfitting problems for the two kinds of LDA classifiers, we use random subspace and bagging to improve them respectively. By random sampling on feature vectors and training samples, multiple stabilized Fisherface and N-LDA classifiers are constructed and the two groups of complementary classifiers are integrated using a fusion rule, so nearly all the discriminative information is preserved. In addition, we further apply random sampling on parameter selection in order to overcome the difficulty of selecting optimal parameters in our algorithms. Then, we use the developed random sampling framework for the integration of multiple features. A robust random sampling face recognition system integrating shape, texture, and Gabor responses is finally constructed.[PUBLICATION ABSTRACT]
AbstractList Subspace face recognition often suffers from two problems: (1) the training sample set is small compared with the high dimensional feature vector; (2) the performance is sensitive to the subspace dimension. Instead of pursuing a single optimal subspace, we develop an ensemble learning framework based on random sampling on all three key components of a classification system: the feature space, training samples, and subspace parameters. Fisherface and Null Space LDA (N-LDA) are two conventional approaches to address the small sample size problem. But in many cases, these LDA classifiers are overfitted to the training set and discard some useful discriminative information. By analyzing different overfitting problems for the two kinds of LDA classifiers, we use random subspace and bagging to improve them respectively. By random sampling on feature vectors and training samples, multiple stabilized Fisherface and N-LDA classifiers are constructed and the two groups of complementary classifiers are integrated using a fusion rule, so nearly all the discriminative information is preserved. In addition, we further apply random sampling on parameter selection in order to overcome the difficulty of selecting optimal parameters in our algorithms. Then, we use the developed random sampling framework for the integration of multiple features. A robust random sampling face recognition system integrating shape, texture, and Gabor responses is finally constructed.
Issue Title: Special Issue: Computer Vision and Pattern Recognition-CVPR 2004 Subspace face recognition often suffers from two problems: (1) the training sample set is small compared with the high dimensional feature vector; (2) the performance is sensitive to the subspace dimension. Instead of pursuing a single optimal subspace, we develop an ensemble learning framework based on random sampling on all three key components of a classification system: the feature space, training samples, and subspace parameters. Fisherface and Null Space LDA (N-LDA) are two conventional approaches to address the small sample size problem. But in many cases, these LDA classifiers are overfitted to the training set and discard some useful discriminative information. By analyzing different overfitting problems for the two kinds of LDA classifiers, we use random subspace and bagging to improve them respectively. By random sampling on feature vectors and training samples, multiple stabilized Fisherface and N-LDA classifiers are constructed and the two groups of complementary classifiers are integrated using a fusion rule, so nearly all the discriminative information is preserved. In addition, we further apply random sampling on parameter selection in order to overcome the difficulty of selecting optimal parameters in our algorithms. Then, we use the developed random sampling framework for the integration of multiple features. A robust random sampling face recognition system integrating shape, texture, and Gabor responses is finally constructed.[PUBLICATION ABSTRACT]
Author Wang, Xiaogang
Tang, Xiaoou
Author_xml – sequence: 1
  givenname: Xiaogang
  surname: Wang
  fullname: Wang, Xiaogang
– sequence: 2
  givenname: Xiaoou
  surname: Tang
  fullname: Tang, Xiaoou
BookMark eNp9kD1rwzAQhkVJoUnaH9DNUOim9k6yZGssoV8QKCTtLBRZDg625Fr20Pz62qRThi53y_Me7z0LMvPBO0JuER4QIHuMiExyCiBpDiqnxwsyR5FxiimIGZmDYkCFVHhFFjEeAIDljM8J3RhfhCbZmqatK79PytAl22EXW2Nd8jKNjbNh76u-Cv6aXJamju7mby_J18vz5-qNrj9e31dPa2p5Bj0trcgLyZkpjbCQo8Id2NSUkpfAlEF0KWdSZgDcgNw5zHPBC6l4kYqMMcuX5P50t-3C9-Bir5sqWlfXxrswRM0USMhTPoJ3Z-AhDJ0fu2lEHMsoycVIZSfKdiHGzpXaVr2ZHuo7U9UaQU8S9UmiHiXqSaI-jkk8S7Zd1Zju55_ML4OPc_A
CitedBy_id crossref_primary_10_1016_j_patcog_2011_08_024
crossref_primary_10_1007_s00521_017_3092_7
crossref_primary_10_1109_TIM_2019_2905904
crossref_primary_10_1109_TPAMI_2012_70
crossref_primary_10_1016_j_knosys_2018_02_008
crossref_primary_10_1109_TPAMI_2008_222
crossref_primary_10_1016_j_ins_2015_03_063
crossref_primary_10_1016_j_patcog_2023_110218
crossref_primary_10_1016_j_sigpro_2018_10_015
crossref_primary_10_1109_TPAMI_2014_2366766
crossref_primary_10_1007_s11760_014_0659_y
crossref_primary_10_1109_TIFS_2012_2226580
crossref_primary_10_1109_TPAMI_2016_2542816
crossref_primary_10_1016_j_neucom_2016_10_047
crossref_primary_10_1016_j_patcog_2012_04_001
crossref_primary_10_1109_TIP_2015_2460464
crossref_primary_10_4018_jmcmc_2012100102
crossref_primary_10_1016_j_ecohyd_2023_01_001
crossref_primary_10_1109_TNN_2007_894042
crossref_primary_10_1016_j_cviu_2015_02_011
crossref_primary_10_1016_j_imavis_2008_12_009
crossref_primary_10_1007_s11760_012_0411_4
crossref_primary_10_1007_s11263_008_0161_5
crossref_primary_10_1016_j_eswa_2010_07_150
crossref_primary_10_1007_s11356_022_22761_y
crossref_primary_10_1007_s11063_011_9180_2
crossref_primary_10_1109_TIFS_2009_2025844
crossref_primary_10_1016_j_neucom_2008_04_042
crossref_primary_10_1016_j_inffus_2015_09_005
crossref_primary_10_1016_j_patcog_2017_01_003
crossref_primary_10_1587_transinf_2017PCP0012
crossref_primary_10_1109_TKDE_2010_143
crossref_primary_10_1016_j_patcog_2015_12_011
crossref_primary_10_1016_j_image_2015_06_010
crossref_primary_10_1016_j_neucom_2012_11_015
crossref_primary_10_3390_rs15204952
crossref_primary_10_1049_iet_bmt_2016_0060
crossref_primary_10_1080_10106049_2021_1967464
crossref_primary_10_1109_TNN_2011_2152852
crossref_primary_10_1145_3625235
crossref_primary_10_1109_LSP_2020_3005039
crossref_primary_10_1016_j_neucom_2018_02_100
crossref_primary_10_1016_j_geomorph_2017_12_008
crossref_primary_10_1109_TPAMI_2012_229
crossref_primary_10_1016_j_patrec_2007_10_005
crossref_primary_10_1109_TNNLS_2015_2464681
crossref_primary_10_1016_j_simpat_2016_02_007
crossref_primary_10_1109_TIFS_2011_2156787
crossref_primary_10_1016_j_heliyon_2020_e03751
crossref_primary_10_1016_j_knosys_2016_05_033
crossref_primary_10_1007_s11053_021_09891_9
crossref_primary_10_1109_TIFS_2012_2214212
crossref_primary_10_1109_TPAMI_2011_104
crossref_primary_10_1016_j_patcog_2008_08_025
crossref_primary_10_1016_j_asoc_2011_12_019
crossref_primary_10_1007_s00138_013_0584_z
crossref_primary_10_1080_10106049_2021_1892210
crossref_primary_10_1080_1206212X_2016_1160643
crossref_primary_10_3390_su12072622
crossref_primary_10_1016_j_patcog_2016_08_007
crossref_primary_10_1109_JOE_2013_2280035
crossref_primary_10_1016_j_eswa_2013_07_047
crossref_primary_10_1016_j_neucom_2014_11_105
crossref_primary_10_1016_j_eswa_2010_03_025
crossref_primary_10_1155_2009_465193
crossref_primary_10_1109_TPAMI_2008_174
crossref_primary_10_1016_j_patcog_2016_11_016
crossref_primary_10_1109_TIP_2009_2038765
crossref_primary_10_1109_TCSVT_2012_2202079
crossref_primary_10_1109_TIP_2020_3016502
crossref_primary_10_1016_j_patcog_2008_10_014
crossref_primary_10_1016_j_patcog_2009_01_010
crossref_primary_10_1007_s11263_013_0645_9
crossref_primary_10_1109_TCYB_2020_2985997
crossref_primary_10_3390_s141223509
crossref_primary_10_1016_j_patcog_2010_07_014
crossref_primary_10_1109_TPAMI_2013_134
crossref_primary_10_1109_TPAMI_2010_180
crossref_primary_10_1016_j_jvcir_2015_03_001
crossref_primary_10_1016_j_patcog_2017_06_004
crossref_primary_10_1016_j_patcog_2019_107040
crossref_primary_10_3390_rs14194803
crossref_primary_10_1109_TNNLS_2013_2258174
crossref_primary_10_1016_j_neucom_2013_09_007
crossref_primary_10_1016_j_patcog_2017_04_014
crossref_primary_10_1109_TIFS_2014_2360825
crossref_primary_10_3390_f11040421
Cites_doi 10.1109/34.598231
10.1016/S0167-8655(03)00079-5
10.1109/3477.990871
10.3233/IDA-1999-3304
10.1109/21.155943
10.1109/34.735803
10.1016/S0031-3203(99)00179-X
10.1109/34.709601
10.1109/34.588027
10.1007/3-540-44887-X_101
10.1109/72.788647
10.1007/978-3-642-72201-1_13
10.1007/3-540-48219-9_8
10.1109/CVPR.1991.139758
10.1145/954339.954342
10.1016/S0031-3203(99)00139-9
10.1109/34.531802
10.1109/TPAMI.2004.57
10.1109/34.598235
10.1109/34.598228
ContentType Journal Article
Copyright Springer Science + Business Media, LLC 2006
Copyright_xml – notice: Springer Science + Business Media, LLC 2006
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-006-8098-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 104
ExternalDocumentID 2793896201
10_1007_s11263_006_8098_z
Genre Feature
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
ICD
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
3V.
7SC
7XB
8AL
8FD
8FK
AESKC
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
AAYZH
PUEGO
ID FETCH-LOGICAL-c370t-fc58d632afa5c08191b0c4af63f029a11e432667003a06be18853d693d45722c3
IEDL.DBID M0C
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239828100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Fri Sep 05 10:00:58 EDT 2025
Tue Nov 04 19:45:17 EST 2025
Sat Nov 29 06:42:23 EST 2025
Tue Nov 18 20:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-fc58d632afa5c08191b0c4af63f029a11e432667003a06be18853d693d45722c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1113709635
PQPubID 1456341
PageCount 14
ParticipantIDs proquest_miscellaneous_29060843
proquest_journals_1113709635
crossref_citationtrail_10_1007_s11263_006_8098_z
crossref_primary_10_1007_s11263_006_8098_z
PublicationCentury 2000
PublicationDate 2006-10-01
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationYear 2006
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References P.N. Belhumeur (8098_CR1) 1997; 19
8098_CR29
8098_CR24
8098_CR23
L. Breiman (8098_CR2) 1996; 24
8098_CR22
S.B. Yacoub (8098_CR28) 1999; 10
8098_CR21
8098_CR5
8098_CR4
A. Ross (8098_CR19) 2003; 24
L. Xu (8098_CR27) 1992; 22
T. Kam Ho (8098_CR7) 1998; 20
L. Chen (8098_CR3) 2000; 33
8098_CR17
8098_CR16
8098_CR18
D. Swets (8098_CR20) 1996; 16
8098_CR13
8098_CR15
W.P. Kegelmeyer (8098_CR8) 1997; 19
8098_CR14
T. Kam Ho (8098_CR6) 1999; 3
8098_CR11
8098_CR10
X. Wang (8098_CR25) 2004; 26
8098_CR9
A. Lanitis (8098_CR12) 1997; 19
L. Wiskott (8098_CR26) 1997; 19
References_xml – ident: 8098_CR11
– volume: 19
  start-page: 743
  issue: 7
  year: 1997
  ident: 8098_CR12
  publication-title: IEEE Trans. on PAMI
  doi: 10.1109/34.598231
– volume: 24
  start-page: 2115
  year: 2003
  ident: 8098_CR19
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(03)00079-5
– ident: 8098_CR24
– ident: 8098_CR10
  doi: 10.1109/3477.990871
– volume: 3
  start-page: 191
  year: 1999
  ident: 8098_CR6
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-1999-3304
– ident: 8098_CR22
– volume: 22
  start-page: 418
  issue: 3
  year: 1992
  ident: 8098_CR27
  publication-title: IEEE Trans. on System, Man, and Cybernetics
  doi: 10.1109/21.155943
– ident: 8098_CR9
– ident: 8098_CR5
  doi: 10.1109/34.735803
– ident: 8098_CR15
  doi: 10.1016/S0031-3203(99)00179-X
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 8098_CR7
  publication-title: IEEE Trans. on PAMI
  doi: 10.1109/34.709601
– volume: 19
  start-page: 405
  issue: 4
  year: 1997
  ident: 8098_CR8
  publication-title: IEEE Trans. on PAMI
  doi: 10.1109/34.588027
– ident: 8098_CR13
  doi: 10.1007/3-540-44887-X_101
– volume: 10
  start-page: 1065
  issue: 5
  year: 1999
  ident: 8098_CR28
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.788647
– ident: 8098_CR4
– ident: 8098_CR14
– ident: 8098_CR16
– ident: 8098_CR17
  doi: 10.1007/978-3-642-72201-1_13
– ident: 8098_CR18
  doi: 10.1007/3-540-48219-9_8
– ident: 8098_CR21
  doi: 10.1109/CVPR.1991.139758
– ident: 8098_CR29
  doi: 10.1145/954339.954342
– ident: 8098_CR23
– volume: 33
  start-page: 1713
  issue: 10
  year: 2000
  ident: 8098_CR3
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(99)00139-9
– volume: 16
  start-page: 831
  issue: 8
  year: 1996
  ident: 8098_CR20
  publication-title: IEEE Trans. on PAMI
  doi: 10.1109/34.531802
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 8098_CR2
  publication-title: Machine Learning
– volume: 26
  start-page: 1222
  issue: 9
  year: 2004
  ident: 8098_CR25
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.57
– volume: 19
  start-page: 775
  issue: 7
  year: 1997
  ident: 8098_CR26
  publication-title: IEEE Trans. on Pattern Analysis Machine Intelligence
  doi: 10.1109/34.598235
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 8098_CR1
  publication-title: IEEE Trans. on PAMI
  doi: 10.1109/34.598228
SSID ssj0002823
Score 2.312512
Snippet Issue Title: Special Issue: Computer Vision and Pattern Recognition-CVPR 2004 Subspace face recognition often suffers from two problems: (1) the training...
Subspace face recognition often suffers from two problems: (1) the training sample set is small compared with the high dimensional feature vector; (2) the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 91
SubjectTerms Polls & surveys
Studies
Title Random Sampling for Subspace Face Recognition
URI https://www.proquest.com/docview/1113709635
https://www.proquest.com/docview/29060843
Volume 70
WOSCitedRecordID wos000239828100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOnApr1Zs2S45cEKy6th52CfUIlZILavV8ihwiRzHQUhtsiVLD_vrO5N1FnHhwsVSnIesjGfmm4dnAI4sj0qjeM5kEaGBopAVcytS5iIEG2Gci8S1B4V_pqORur3VY-9wa3xaZScTW0Fd1JZ85F-pJXqKeFvGJ9O_jLpGUXTVt9BYhXVCNpTSd8FPl5IYzYlFK3k0keJEh11Usz06FwqKYHIqx6sVm7_WS6_FcqtrhlvvXeU2fPAoM_i22BY7sOKqXdjyiDPw_NzgVNfUoZvbAzYxVVH_CS4N5ZpXDwGi2oDECxrXLhjSMOmSjurqI1wPz65Oz5nvqcAsLmzGShurIpHClCa2BAfCnNvIlIksudAmDF2EgI7O7kjDk9yFCvV5kWgkZZwKYeUnWKvqyu1DkKPqT4STWkmLoKzUQplQmijSKndS6h7w7o9m1hccp74Xv7OXUslEhIxS64gI2bwHx8tXpotqG2893O9okHnGa7IXAvTgcHkbWYbiIKZy9XOTUYV7riL5-e0PHMBm629pM_f6sDZ7enZfYMP-mz02TwNYTX_dDWD9-9loPMGrHykbtLsPx3F8j-Pk8uY_RTjcew
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RitReSstDXaAlB7ggWSS2k9gHhBB0BdrtCvGQuAXHcapKbbKQpVX5UfxGZrLxIi7cOPSSg5NYsmc8843nBbBlQ1kaFeZMFBINFIVHMbc8ZU4i2IjinCeuTRQepqORurrSp3Pw4HNhKKzSy8RWUBe1pTvyXWqJniLeFvH--IZR1yjyrvoWGlO2GLh_f9Fka_ZOjpC-25z3v10cHrOuqwCzOMGElTZWRSK4KU1sSSFGeWilKRNRhlybKHISIQ1lrwgTJrmLFGq0ItG4mDjl3Aqc9w28lUKldK4GKZtJfjRfpq3r0SSLEx15L2qbqhdx8piGVP5XK3b_XA8-VwOtbusv_m-78hE-dCg6OJiy_SeYc9USLHaIOujkVYNDvmmFH1sGdmaqov4dnBuKpa9-BIjaAxKfY2Nd0KfHmQ-qqqsVuHyVdazCfFVX7jMEOUKbhDuhlbAIOkvNlYmEkVKr3AmhexB6Cma2K6hOfT1-ZU-loInoGYUOEtGz-x7szH4ZT6uJvPTxhqd51gmWJnsieA82Z69RJJCfx1SuvmsyquAfKinWXp5gE94dX3wfZsOT0WAd3rd3S22U4gbMT27v3BdYsH8mP5vbry2XB3D92gz0CGeKMP4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xEuJCeYqyPHKAC1JEYudhH9AKARUIVFU8JMQlOI6DVlqS0pRd0Z-2v25n0riICzcOXHJwEkv2jGe-8bwA9rQX5Ep4qcuzAA0UgUcx1Sx2TYBgww9TFpk6Ufgq7nbF_b3sTcE_mwtDYZVWJtaCOis13ZEfUkv0GPE2Dw_zJiyid9r52X9xqYMUeVptO40xi1yat79ovlVHF6dI633GOme3J-du02HA1TjZ0M11KLKIM5WrUJNy9FNPByqPeO4xqXzfBAhvKJOFKy9KjS9Qu2WRxIWFMWOa47zTMBujjUnhhL3wYaIF0JQZt7FH8yyMpG89qnXans_Ie-pRKWAp3NFHnfhRJdR6rtP6zju0BIsNunaOx8dhGaZMsQKtBmk7jRyrcMg2s7Bjq-BeqyIrn50bRTH2xZODaN4hsdpX2jgdelzbYKuyWIO7L1nHOswUZWE2wEkR8kTMcCm4RjCaSyaUz1UQSJEazmUbPEvNRDeF1qnfx-_kvUQ0MUBCIYXEAMmoDQeTX_rjKiOffbxl6Z80AqdK3onfht3JaxQV5P9RhSlfq4Qq-3si4JufT7AL88g3ydVF9_IHLNRXTnXw4hbMDAevZhvm9J_hr2qwUzO8A49fzT__AYQQOiI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Sampling+for+Subspace+Face+Recognition&rft.jtitle=International+journal+of+computer+vision&rft.au=Wang%2C+Xiaogang&rft.au=Tang%2C+Xiaoou&rft.date=2006-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=70&rft.issue=1&rft.spage=91&rft_id=info:doi/10.1007%2Fs11263-006-8098-z&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2793896201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon