Algebraic duality theorems for infinite LP problems
In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces,...
Uložené v:
| Vydané v: | Linear algebra and its applications Ročník 434; číslo 3; s. 688 - 693 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Inc
01.02.2011
Elsevier |
| Predmet: | |
| ISSN: | 0024-3795 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e.
LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2010.09.007 |