Algebraic duality theorems for infinite LP problems
In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces,...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 434; číslo 3; s. 688 - 693 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.02.2011
Elsevier |
| Témata: | |
| ISSN: | 0024-3795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e.
LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2010.09.007 |