Algebraic duality theorems for infinite LP problems

In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 434; číslo 3; s. 688 - 693
Hlavní autor: PINTER, Miklós
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.02.2011
Elsevier
Témata:
ISSN:0024-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players.
ISSN:0024-3795
DOI:10.1016/j.laa.2010.09.007