Algebraic duality theorems for infinite LP problems
In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces,...
Gespeichert in:
| Veröffentlicht in: | Linear algebra and its applications Jg. 434; H. 3; S. 688 - 693 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Inc
01.02.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0024-3795 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e.
LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2010.09.007 |