Algebraic duality theorems for infinite LP problems

In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 434; H. 3; S. 688 - 693
1. Verfasser: PINTER, Miklós
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 01.02.2011
Elsevier
Schlagworte:
ISSN:0024-3795
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a primal–dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players.
ISSN:0024-3795
DOI:10.1016/j.laa.2010.09.007