Drone Trajectory Segmentation for Real-Time and Adaptive Time-Of-Flight Prediction

This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Drones (Basel) Ročník 5; číslo 3; s. 62
Hlavní autoři: Conte, Claudia, de Alteriis, Giorgio, Schiano Lo Moriello, Rosario, Accardo, Domenico, Rufino, Giancarlo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2021
Témata:
ISSN:2504-446X, 2504-446X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is predicted employing a properly trained neural network. The final flight-time over the complete path is computed summing the partial results related to the standard sub-paths. Real drone flight-tests were performed in order to realize an adequate database needed to train the adopted neural network as a classifier, employing the Bayesian regularization backpropagation algorithm as training function. For the network, the relative angle between two sides of a corner and the wind condition are the inputs, while the flight-time over the corner is the output parameter. Then, generic paths were designed and performed to test the method. The total flight-time as resulting from the drone telemetry was compared with the flight-time predicted by the developed method based on machine learning techniques. At the end of the paper, the proposed method was demonstrated as effective in predicting possible collisions among drones flying intersecting paths, as a possible application to support the development of unmanned traffic management procedures.
AbstractList This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is predicted employing a properly trained neural network. The final flight-time over the complete path is computed summing the partial results related to the standard sub-paths. Real drone flight-tests were performed in order to realize an adequate database needed to train the adopted neural network as a classifier, employing the Bayesian regularization backpropagation algorithm as training function. For the network, the relative angle between two sides of a corner and the wind condition are the inputs, while the flight-time over the corner is the output parameter. Then, generic paths were designed and performed to test the method. The total flight-time as resulting from the drone telemetry was compared with the flight-time predicted by the developed method based on machine learning techniques. At the end of the paper, the proposed method was demonstrated as effective in predicting possible collisions among drones flying intersecting paths, as a possible application to support the development of unmanned traffic management procedures.
Author Schiano Lo Moriello, Rosario
Accardo, Domenico
Rufino, Giancarlo
Conte, Claudia
de Alteriis, Giorgio
Author_xml – sequence: 1
  givenname: Claudia
  orcidid: 0000-0001-9441-2927
  surname: Conte
  fullname: Conte, Claudia
– sequence: 2
  givenname: Giorgio
  orcidid: 0000-0002-4460-6640
  surname: de Alteriis
  fullname: de Alteriis, Giorgio
– sequence: 3
  givenname: Rosario
  orcidid: 0000-0003-4875-2845
  surname: Schiano Lo Moriello
  fullname: Schiano Lo Moriello, Rosario
– sequence: 4
  givenname: Domenico
  orcidid: 0000-0001-8843-0109
  surname: Accardo
  fullname: Accardo, Domenico
– sequence: 5
  givenname: Giancarlo
  orcidid: 0000-0002-6353-5219
  surname: Rufino
  fullname: Rufino, Giancarlo
BookMark eNp1UV1LHTEQDcVCrfWx7ws-b50ks5vso_hRBUGxV_AtzCbZay57N7fZWPDfm-uVYoU-zTnDOWeGma9sb4qTZ-w7hx9SdnDsUuFzAxKgFZ_YvmgAa8T2Ye8d_sIO53kFAEJg03Z8n92dbX3VItHK2xzTc_XLL9d-ypRDnKohpurO01gvwtpXNLnqxNEmhz_FUjr1zVBfjGH5mKvb5F2wW9M39nmgcfaHb_WA3V-cL04v6-ubn1enJ9e1lQpyPQCXQmlEib4n37eKOketwrZvNTXoOtAObIfeeQTsudYCNUkQasCmt_KAXe1yXaSV2aSwpvRsIgXz2ohpaSjlYEdvUHPdCz44QQMidNpyhbaAQjxoXrKOdlmbFH8_-TmbVXxKU1nfiEa1UiutVVHVO5VNcZ6TH_5O5WC2XzD_fKHo5Qe9DbvD5kRh_I_rBdjcjIw
CitedBy_id crossref_primary_10_3390_drones8100549
crossref_primary_10_3390_electronics13234850
crossref_primary_10_1109_COMST_2024_3471671
crossref_primary_10_1016_j_ast_2022_107921
crossref_primary_10_3390_aerospace11121044
crossref_primary_10_4028_p_82vyug
crossref_primary_10_3390_aerospace11110873
crossref_primary_10_1109_MITS_2023_3325736
crossref_primary_10_3390_electronics14153065
crossref_primary_10_1016_j_asoc_2022_109941
crossref_primary_10_3390_drones8090468
crossref_primary_10_1109_MAES_2023_3335003
crossref_primary_10_1109_JSEN_2025_3566651
Cites_doi 10.1017/S0001924000010307
10.1109/TWC.2020.3023816
10.2514/6.2017-3072
10.1109/TVT.2019.2916429
10.1109/TVT.2019.2954094
10.1016/j.comcom.2021.01.003
10.1017/CBO9780511546877
10.3390/s19163461
10.1016/j.paerosci.2020.100640
10.1016/j.trc.2018.08.012
10.1109/ACCESS.2019.2926782
10.3390/drones5020027
10.3390/aerospace7030024
10.1109/ACCESS.2020.3016289
10.1109/6979.898224
10.3390/electronics9101708
10.1109/AIDA-AT48540.2020.9049180
10.1109/ACCESS.2020.3010963
10.3390/aerospace7100145
10.1002/qj.49705221807
10.1109/TWC.2021.3067163
10.1109/ITSC.2007.4357787
10.1109/TITS.2018.2877572
10.1109/DASC50938.2020.9256513
10.1109/WCNC45663.2020.9120587
10.1109/TVT.2020.3003933
10.2514/4.866463
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/drones5030062
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_4818b21fd2af44098c174c409440e081
10_3390_drones5030062
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-f0132784434ebaeb67a9da6746b68a54d908d0c94ede404b188248a3027f45bc3
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000699313900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-446X
IngestDate Tue Oct 14 19:03:42 EDT 2025
Fri Jul 25 08:39:54 EDT 2025
Sat Nov 29 07:18:38 EST 2025
Tue Nov 18 21:24:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-f0132784434ebaeb67a9da6746b68a54d908d0c94ede404b188248a3027f45bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8843-0109
0000-0002-4460-6640
0000-0003-4875-2845
0000-0001-9441-2927
0000-0002-6353-5219
OpenAccessLink https://doaj.org/article/4818b21fd2af44098c174c409440e081
PQID 2576387887
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_4818b21fd2af44098c174c409440e081
proquest_journals_2576387887
crossref_primary_10_3390_drones5030062
crossref_citationtrail_10_3390_drones5030062
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Galkin (ref_27) 2019; 68
ref_14
ref_36
ref_35
ref_12
ref_34
ref_33
ref_10
ref_32
Mondoloni (ref_2) 2020; 119
ref_31
Hu (ref_13) 2021; 20
ref_30
Qadir (ref_28) 2021; 168
ref_18
Ma (ref_23) 2020; 8
ref_39
ref_38
ref_15
ref_37
Gui (ref_16) 2020; 69
Xu (ref_11) 2019; 7
Uzun (ref_8) 2017; 18
Alligier (ref_19) 2018; 96
Barratt (ref_21) 2018; 20
Schuster (ref_6) 2015; 119
Prandini (ref_3) 2000; 1
Cherian (ref_20) 2020; 7
ref_25
ref_22
Zeng (ref_24) 2020; 8
Wang (ref_17) 2020; 69
ref_42
ref_41
ref_40
ref_1
ref_29
ref_26
ref_9
Garbett (ref_43) 1926; 52
ref_5
ref_4
ref_7
References_xml – ident: ref_7
– volume: 119
  start-page: 121
  year: 2015
  ident: ref_6
  article-title: Trajectory prediction for future air traffic management—Complex manoeuvres and taxiing
  publication-title: Aeronaut. J.
  doi: 10.1017/S0001924000010307
– volume: 20
  start-page: 142
  year: 2021
  ident: ref_13
  article-title: Energy Management and Trajectory Optimization for UAV-Enabled Legitimate Monitoring Systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3023816
– ident: ref_9
– ident: ref_18
  doi: 10.2514/6.2017-3072
– volume: 68
  start-page: 6985
  year: 2019
  ident: ref_27
  article-title: A Stochastic Model for UAV Networks Positioned Above Demand Hotspots in Urban Environments
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2916429
– ident: ref_5
– ident: ref_32
– volume: 69
  start-page: 140
  year: 2020
  ident: ref_16
  article-title: Flight Delay Prediction Based on Aviation Big Data and Machine Learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2954094
– volume: 168
  start-page: 114
  year: 2021
  ident: ref_28
  article-title: Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.01.003
– ident: ref_34
– ident: ref_35
  doi: 10.1017/CBO9780511546877
– ident: ref_42
  doi: 10.3390/s19163461
– volume: 119
  start-page: 100640
  year: 2020
  ident: ref_2
  article-title: Aircraft trajectory prediction and synchronization for air traffic management applications
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2020.100640
– volume: 96
  start-page: 72
  year: 2018
  ident: ref_19
  article-title: Learning aircraft operational factors to improve aircraft climb prediction: A large scale multi-airport study
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2018.08.012
– volume: 7
  start-page: 90941
  year: 2019
  ident: ref_11
  article-title: Matrix Structure Driven Interior Point Method for Quadrotor Real-Time Trajectory Planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926782
– ident: ref_29
  doi: 10.3390/drones5020027
– ident: ref_30
  doi: 10.3390/aerospace7030024
– volume: 8
  start-page: 151250
  year: 2020
  ident: ref_24
  article-title: A Deep Learning Approach for Aircraft Trajectory Prediction in Terminal Airspace
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016289
– ident: ref_37
– ident: ref_14
– ident: ref_1
– volume: 1
  start-page: 199
  year: 2000
  ident: ref_3
  article-title: A probabilistic approach to aircraft conflict detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/6979.898224
– ident: ref_26
  doi: 10.3390/electronics9101708
– ident: ref_22
  doi: 10.1109/AIDA-AT48540.2020.9049180
– volume: 8
  start-page: 134668
  year: 2020
  ident: ref_23
  article-title: A Hybrid CNN-LSTM Model for Aircraft 4D Trajectory Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010963
– ident: ref_25
  doi: 10.3390/aerospace7100145
– volume: 52
  start-page: 161
  year: 1926
  ident: ref_43
  article-title: Admiral Sir Francis Beaufort and the Beaufort Scales of wind and weather
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49705221807
– volume: 18
  start-page: 1
  year: 2017
  ident: ref_8
  article-title: Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction
  publication-title: Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng.
– ident: ref_15
  doi: 10.1109/TWC.2021.3067163
– ident: ref_4
  doi: 10.1109/ITSC.2007.4357787
– volume: 20
  start-page: 3536
  year: 2018
  ident: ref_21
  article-title: Learning Probabilistic Trajectory Models of Aircraft in Terminal Airspace From Position Data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2877572
– ident: ref_40
  doi: 10.1109/DASC50938.2020.9256513
– ident: ref_12
  doi: 10.1109/WCNC45663.2020.9120587
– ident: ref_31
– ident: ref_33
– volume: 69
  start-page: 9497
  year: 2020
  ident: ref_17
  article-title: A Real-Time Collision Prediction Mechanism With Deep Learning for Intelligent Transportation System
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3003933
– ident: ref_10
– ident: ref_41
– volume: 7
  start-page: 412
  year: 2020
  ident: ref_20
  article-title: Flight trajectory prediction for air traffic management
  publication-title: J. Crit. Rev.
– ident: ref_38
– ident: ref_36
– ident: ref_39
  doi: 10.2514/4.866463
SSID ssj0002245691
Score 2.2833407
Snippet This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 62
SubjectTerms Aircraft
Algorithms
Back propagation
Back propagation networks
drone
Drones
Flight tests
Ground stations
Machine learning
neural network
Neural networks
Regularization
Segmentation
Telemetry
Traffic management
trajectory prediction
unmanned traffic management
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aevDiAxWrVXIQTwb3MbubnKRViweppSr0tuS1omit2yr4781s00oRvXjNJhB2kplvHvmGkKMg0yJMLDCRKmBghGBchZpJ48yrM_CJFtVD4eus2-WDgej5gNvYl1XOdGKlqM2rxhj5KQLjmGPt29nojWHXKMyu-hYay6SOTGVQI_X2ZbfXn0dZIszriXBKrhk7__7UlMiBn7izHaTRgjGqOPt_qOTKznTW_7vDDbLmESZtTY_EJlmywy3Sv8ANUWeZnqow_Se9tQ8v_t3RkDrkSvsOMjJ8EULl0NCWkSPUhBRH2E3BOs_oxtNeiZkdXLRN7juXd-dXzLdTYDrOggkrMK2ScYAYrJJWpZkURqYZpCrlMnFyCrgJtABrLASgQge-gUtMbBaQKB3vkNrQ7XWX0CgGFWfaVIlTFRYSSXQ4dotJRFwUvEFOZv81155rHFtePOfO50Ax5AtiaJDj-fTRlGTjt4ltFNJ8EnJjVwOv5UPur1oODoOoKCxMJAtw7ivXzuvS6MdCYB0CapDmTH65v7Dj_Ft4e39_3ierEZa1VGVmTVKblO_2gKzoj8njuDz05-8L3ZnkKQ
  priority: 102
  providerName: ProQuest
Title Drone Trajectory Segmentation for Real-Time and Adaptive Time-Of-Flight Prediction
URI https://www.proquest.com/docview/2576387887
https://doaj.org/article/4818b21fd2af44098c174c409440e081
Volume 5
WOSCitedRecordID wos000699313900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kevAiiorVKnsQTy7msUl2j_VRFLSGqlC9hH1FLLVIrIL_3plNlBYRL15yWDbJMrPZmS8z8w0h-0FmZJg4zmSqOeNWSiZ0aJiyYF7BwCdG-kLhy6zfF8OhzGdafWFOWE0PXAvuiINF0VFY2kiVHMCIMOBDG0QlPHCBL7qOwOuZAVMjT-oCjoEMa1LNGHD9ka2Q-z6BPR2k0ZwR8lz9P45ib196q2SlcQxpt17QGllwk3UyOMXnUTAoI_93_YPeuMfnplxoQsHhpAPw9BgWclA1sbRr1QseYBRH2HXJemNE3zSvMCCDN22Qu97Z7ck5a7ogMBNnwZSVGA3JBOcxd1o5nWZKWpVmPNWpUAmINxA2MJI763jAdQg-MxcK45ElT7SJN0lrAmvdIjSKuY4zY328U4elQu4bgU1eEhmXpWiTwy-xFKahCMdOFeMCoAJKsZiTYpscfE9_qbkxfpt4jDL-noSU1n4AFF00ii7-UnSbdL40VDTf2WuBcCkWmBG5_R_v2CHLEeas-ByyDmlNqze3S5bM-_Tptdoji8dn_Xyw57caXPPkAcbyi6v8_hMS-9de
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH_BxUQvilHjIsgc1JMT2s60nTkQg-KGDcu6QUzwVOarRAPL2l0x_FP8jb7XbZcQojcOXqczzXTer-9j3hfA6yh3Ok6D5DqzkkuvNVc2dtx4FK8o4FOn60ThQT4cqqMjPVqCqzYXhsIqW55YM2p_7uiOfJMUY6Eo9u395CenrlHkXW1baMxhsRcuf6PJNt3q7yB93yRJ79Phx13edBXgTuTRjJfkXciVlEIGa4LNcqO9yXKZ2UyZFLcbKR85LYMPMpI2Rh1UKkP-vVKm1gl87z1Ylgh21YHlUX9_9G1xq5OQH1HH82KeQuho01dUcz_FfynKkhvCr-4RcEsE1HKt9_h_O5EVeNRo0Gx7DvknsBTGT-Fghw6AoeT9UbshLtmXcHLW5FWNGWrm7ABVYk4ZL8yMPdv2ZkKcntEI_1zy3ildU7BRRZ4rWvQMvt7JZzyHzhj3-gJYIqQVufO1Y9jGpaEiQYq64aRalKXqwruWjoVraqlTS4_TAm0qIntxg-xdeLuYPpkXEfnbxA8EisUkqv1dD5xXJ0XDSgqJOpZN4tInppRoniuHVqUjO11GATW8Lqy1eCkahjQtrsGy-u_HG_Bg93B_UAz6w72X8DChEJ46pG4NOrPqV1iH--5i9n1avWqwz-D4rsH1B_NTP-c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXHgLElgI-ACesTWInsQ8IFZYVVatlVUCquAQ_K1C7XbILqH-NX8eMN1lUIbj1wNVxIsf-5uV5ATzOaqfzMkiuKyu59FpzZXPHjUfxigK-dDolCu_Xk4k6PNTTDfjZ58JQWGXPExOj9qeO7siHpBgLRbFvw9iFRUxH4xfzr5w6SJGntW-nsYLIXjj7gebb4vnuCM_6SVGMX79_9YZ3HQa4E3W25JE8DbWSUshgTbBVbbQ3VS0rWylT4tIz5TOnZfBBZtLmqI9KZcjXF2VpncDvXoLLOF8TdU3Lj-v7nYI8ijpflfUUQmdD31L1_RKpKquKc2IwdQv4QxgkCTe-8T_vzU243unVbGdFCLdgI8xuw8GINoOhPP6SnBNn7F04OumyrWYM9XV2gIoypzwYZmae7XgzJ_7PaIS_jXx8TJcXbNqSP4teugMfLuQ37sLmDNd6D1ghpBW188ldbPNoqHSQoh45pRYxqgE868-0cV2FdWr0cdygpUUQaM5BYABP19Pnq9Iif5v4kgCynkQVwdPAaXvUdAymkah52SKPvjBRotGuHNqajqx3mQXU-waw3WOn6djUovkNnK1_P34EVxFRzf7uZO8-XCsorifF2W3D5rL9Fh7AFfd9-XnRPkxEwODTRSPrF8ekR0o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drone+Trajectory+Segmentation+for+Real-Time+and+Adaptive+Time-Of-Flight+Prediction&rft.jtitle=Drones+%28Basel%29&rft.au=Claudia+Conte&rft.au=Giorgio+de+Alteriis&rft.au=Rosario+Schiano+Lo+Moriello&rft.au=Domenico+Accardo&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=5&rft.issue=3&rft.spage=62&rft_id=info:doi/10.3390%2Fdrones5030062&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4818b21fd2af44098c174c409440e081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon