A modified method for a backward heat conduction problem

We consider a backward heat conduction problem in a strip, where data is given at the final time t = T( T > 0) and a solution for 0 ⩽ t < T is sought. The problem is ill-posed in the sense that the solution(if it exists) does not depend continuously on the data. In order to numerically solve t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 185; číslo 1; s. 564 - 573
Hlavní autoři: Qian, Zhi, Fu, Chu-Li, Shi, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.02.2007
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a backward heat conduction problem in a strip, where data is given at the final time t = T( T > 0) and a solution for 0 ⩽ t < T is sought. The problem is ill-posed in the sense that the solution(if it exists) does not depend continuously on the data. In order to numerically solve the problem, we study a modification of the equation, where a third-order mixed derivative term is added. Error estimates for this problem are given, which show that the modified problem is stable and its solution is an approximation of the backward heat conduction problem. Some numerical tests illustrate that the proposed method is feasible and effective.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2006.07.055