A modified method for a backward heat conduction problem
We consider a backward heat conduction problem in a strip, where data is given at the final time t = T( T > 0) and a solution for 0 ⩽ t < T is sought. The problem is ill-posed in the sense that the solution(if it exists) does not depend continuously on the data. In order to numerically solve t...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 185; číslo 1; s. 564 - 573 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
01.02.2007
Elsevier |
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a backward heat conduction problem in a strip, where data is given at the final time
t
=
T(
T
>
0) and a solution for 0
⩽
t
<
T is sought. The problem is ill-posed in the sense that the solution(if it exists) does not depend continuously on the data. In order to numerically solve the problem, we study a modification of the equation, where a third-order mixed derivative term is added. Error estimates for this problem are given, which show that the modified problem is stable and its solution is an approximation of the backward heat conduction problem. Some numerical tests illustrate that the proposed method is feasible and effective. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2006.07.055 |