AN OBSTRUCTION BUNDLE RELATING GROMOV-WITTEN INVARIANTS OF CURVES AND KÄHLER SURFACES

In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstru...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:American journal of mathematics Ročník 134; číslo 2; s. 453 - 506
Hlavní autori: Lee, Junho, Parker, Thomas H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Baltimore Johns Hopkins University Press 01.04.2012
Predmet:
ISSN:0002-9327, 1080-6377, 1080-6377
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstruction bundle (in the sense of Taubes) over the space of stable maps into curves. Together with the results of our earlier paper, this reduces the calculation of the GW invariants of elliptic and generaltype complex surfaces to computations in the GW theory of curves with additional classes: the Euler classes of the (real) obstruction bundles.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2012.0010