AN OBSTRUCTION BUNDLE RELATING GROMOV-WITTEN INVARIANTS OF CURVES AND KÄHLER SURFACES

In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstru...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of mathematics Ročník 134; číslo 2; s. 453 - 506
Hlavní autoři: Lee, Junho, Parker, Thomas H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Baltimore Johns Hopkins University Press 01.04.2012
Témata:
ISSN:0002-9327, 1080-6377, 1080-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstruction bundle (in the sense of Taubes) over the space of stable maps into curves. Together with the results of our earlier paper, this reduces the calculation of the GW invariants of elliptic and generaltype complex surfaces to computations in the GW theory of curves with additional classes: the Euler classes of the (real) obstruction bundles.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2012.0010