AN OBSTRUCTION BUNDLE RELATING GROMOV-WITTEN INVARIANTS OF CURVES AND KÄHLER SURFACES
In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstru...
Uloženo v:
| Vydáno v: | American journal of mathematics Ročník 134; číslo 2; s. 453 - 506 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Baltimore
Johns Hopkins University Press
01.04.2012
|
| Témata: | |
| ISSN: | 0002-9327, 1080-6377, 1080-6377 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstruction bundle (in the sense of Taubes) over the space of stable maps into curves. Together with the results of our earlier paper, this reduces the calculation of the GW invariants of elliptic and generaltype complex surfaces to computations in the GW theory of curves with additional classes: the Euler classes of the (real) obstruction bundles. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0002-9327 1080-6377 1080-6377 |
| DOI: | 10.1353/ajm.2012.0010 |