AN OBSTRUCTION BUNDLE RELATING GROMOV-WITTEN INVARIANTS OF CURVES AND KÄHLER SURFACES

In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics Jg. 134; H. 2; S. 453 - 506
Hauptverfasser: Lee, Junho, Parker, Thomas H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Baltimore Johns Hopkins University Press 01.04.2012
Schlagworte:
ISSN:0002-9327, 1080-6377, 1080-6377
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a previous paper the authors defined symplectic "Local Gromov-Witten invariants" associated to spin curves and showed that the GW invariants of a Kahler surface X with p g > 0 are a sum of such local GW invariants. This paper describes how the local GW invariants arise from an obstruction bundle (in the sense of Taubes) over the space of stable maps into curves. Together with the results of our earlier paper, this reduces the calculation of the GW invariants of elliptic and generaltype complex surfaces to computations in the GW theory of curves with additional classes: the Euler classes of the (real) obstruction bundles.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2012.0010