On a family of integrals that extend the Askey–Wilson integral

We study a family of integrals parameterised by N=2,3,… generalising the Askey–Wilson integral N=2 which has arisen in the theory of q-analogs of monodromy preserving deformations of linear differential systems and in theory of the Baxter Q operator for the XXZ open quantum spin chain. These integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 421; H. 2; S. 1101 - 1130
Hauptverfasser: Ito, Masahiko, Witte, N.S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.01.2015
Schlagworte:
ISSN:0022-247X, 1096-0813
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a family of integrals parameterised by N=2,3,… generalising the Askey–Wilson integral N=2 which has arisen in the theory of q-analogs of monodromy preserving deformations of linear differential systems and in theory of the Baxter Q operator for the XXZ open quantum spin chain. These integrals are particular examples of moments defined by weights generalising the Askey–Wilson weight and we show the integrals are characterised by various (N−1)-th order linear q-difference equations which we construct. In addition we demonstrate that these integrals can be evaluated as a finite sum of (N−1)BC1-type Jackson integrals or φ2N+12N+2 basic hypergeometric functions.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2014.07.056